WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Adobe Reader
  2. Adware
  3. Altavista
  4. AOL
  5. Apple Macintosh
  6. Application software
  7. Arrow key
  8. Artificial Intelligence
  9. ASCII
  10. Assembly language
  11. Automatic translation
  12. Avatar
  13. Babylon
  14. Bandwidth
  15. Bit
  16. BitTorrent
  17. Black hat
  18. Blog
  19. Bluetooth
  20. Bulletin board system
  21. Byte
  22. Cache memory
  23. Celeron
  24. Central processing unit
  25. Chat room
  26. Client
  27. Command line interface
  28. Compiler
  29. Computer
  30. Computer bus
  31. Computer card
  32. Computer display
  33. Computer file
  34. Computer games
  35. Computer graphics
  36. Computer hardware
  37. Computer keyboard
  38. Computer networking
  39. Computer printer
  40. Computer program
  41. Computer programmer
  42. Computer science
  43. Computer security
  44. Computer software
  45. Computer storage
  46. Computer system
  47. Computer terminal
  48. Computer virus
  49. Computing
  50. Conference call
  51. Context menu
  52. Creative commons
  53. Creative Commons License
  54. Creative Technology
  55. Cursor
  56. Data
  57. Database
  58. Data storage device
  59. Debuggers
  60. Demo
  61. Desktop computer
  62. Digital divide
  63. Discussion groups
  64. DNS server
  65. Domain name
  66. DOS
  67. Download
  68. Download manager
  69. DVD-ROM
  70. DVD-RW
  71. E-mail
  72. E-mail spam
  73. File Transfer Protocol
  74. Firewall
  75. Firmware
  76. Flash memory
  77. Floppy disk drive
  78. GNU
  79. GNU General Public License
  80. GNU Project
  81. Google
  82. Google AdWords
  83. Google bomb
  84. Graphics
  85. Graphics card
  86. Hacker
  87. Hacker culture
  88. Hard disk
  89. High-level programming language
  90. Home computer
  91. HTML
  92. Hyperlink
  93. IBM
  94. Image processing
  95. Image scanner
  96. Instant messaging
  97. Instruction
  98. Intel
  99. Intel Core 2
  100. Interface
  101. Internet
  102. Internet bot
  103. Internet Explorer
  104. Internet protocols
  105. Internet service provider
  106. Interoperability
  107. IP addresses
  108. IPod
  109. Joystick
  110. JPEG
  111. Keyword
  112. Laptop computer
  113. Linux
  114. Linux kernel
  115. Liquid crystal display
  116. List of file formats
  117. List of Google products
  118. Local area network
  119. Logitech
  120. Machine language
  121. Mac OS X
  122. Macromedia Flash
  123. Mainframe computer
  124. Malware
  125. Media center
  126. Media player
  127. Megabyte
  128. Microsoft
  129. Microsoft Windows
  130. Microsoft Word
  131. Mirror site
  132. Modem
  133. Motherboard
  134. Mouse
  135. Mouse pad
  136. Mozilla Firefox
  137. Mp3
  138. MPEG
  139. MPEG-4
  140. Multimedia
  141. Musical Instrument Digital Interface
  142. Netscape
  143. Network card
  144. News ticker
  145. Office suite
  146. Online auction
  147. Online chat
  148. Open Directory Project
  149. Open source
  150. Open source software
  151. Opera
  152. Operating system
  153. Optical character recognition
  154. Optical disc
  155. output
  156. PageRank
  157. Password
  158. Pay-per-click
  159. PC speaker
  160. Peer-to-peer
  161. Pentium
  162. Peripheral
  163. Personal computer
  164. Personal digital assistant
  165. Phishing
  166. Pirated software
  167. Podcasting
  168. Pointing device
  169. POP3
  170. Programming language
  171. QuickTime
  172. Random access memory
  173. Routers
  174. Safari
  175. Scalability
  176. Scrollbar
  177. Scrolling
  178. Scroll wheel
  179. Search engine
  180. Security cracking
  181. Server
  182. Simple Mail Transfer Protocol
  183. Skype
  184. Social software
  185. Software bug
  186. Software cracker
  187. Software library
  188. Software utility
  189. Solaris Operating Environment
  190. Sound Blaster
  191. Soundcard
  192. Spam
  193. Spamdexing
  194. Spam in blogs
  195. Speech recognition
  196. Spoofing attack
  197. Spreadsheet
  198. Spyware
  199. Streaming media
  200. Supercomputer
  201. Tablet computer
  202. Telecommunications
  203. Text messaging
  204. Trackball
  205. Trojan horse
  206. TV card
  207. Unicode
  208. Uniform Resource Identifier
  209. Unix
  210. URL redirection
  211. USB flash drive
  212. USB port
  213. User interface
  214. Vlog
  215. Voice over IP
  216. Warez
  217. Wearable computer
  218. Web application
  219. Web banner
  220. Web browser
  221. Web crawler
  222. Web directories
  223. Web indexing
  224. Webmail
  225. Web page
  226. Website
  227. Wiki
  228. Wikipedia
  229. WIMP
  230. Windows CE
  231. Windows key
  232. Windows Media Player
  233. Windows Vista
  234. Word processor
  235. World Wide Web
  236. Worm
  237. XML
  238. X Window System
  239. Yahoo
  240. Zombie computer
 



MY COMPUTER
This article is from:
http://en.wikipedia.org/wiki/DNS_server

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Domain name system

From Wikipedia, the free encyclopedia

(Redirected from DNS server)

The domain name system (DNS) stores and associates many types of information with domain names, but most importantly, it translates domain names (computer hostnames) to IP addresses. It also lists mail exchange servers accepting e-mail for each domain. In providing a worldwide keyword-based redirection service, DNS is an essential component of contemporary Internet use.

Useful for several reasons, the DNS pre-eminently makes it possible to attach easy-to-remember domain names (such as "wikipedia.org") to hard-to-remember IP addresses (such as 66.230.200.100). People take advantage of this when they recite URLs and e-mail addresses. In a subsidiary function, the domain name system makes it possible for people to assign authoritative names without needing to communicate with a central registrar each time.

History of the DNS

The practice of using a name as a more human-legible abstraction of a machine's numerical address on the network predates even TCP/IP, and goes all the way back to the ARPAnet era. Originally, each computer on the network retrieved a file called HOSTS.TXT from SRI (now SRI International) which mapped an address (such as 192.0.34.166) to a name (such as www.example.net.) The Hosts file still exists on most modern operating systems, either by default or through configuration, and allows users to specify an IP address to use for a hostname without checking the DNS. This file now serves primarily for troubleshooting DNS errors or for mapping local addresses to more organic names. (The Hosts file can also help in ad-blocking, and spyware may utilize it to hijack a computer.) But a system based on a HOSTS.TXT file had inherent limitations, because of the obvious requirement that every time a given computer's address changed, every computer that wanted to communicate with it would need an update to its Hosts file.

The growth of networking called for a more scalable system: one that recorded a change in a host's address in one place only. Other hosts would learn about the change dynamically through a notification system, thus completing a globally accessible network of all hosts' names and their associated IP Addresses.

Paul Mockapetris invented the DNS in 1983; the original specifications appear in RFC 882 and 883. In 1987, the publication of RFC 1034 and RFC 1035 updated the DNS specification and made RFC 882 and RFC 883 obsolete. Several more-recent RFCs have proposed various extensions to the core DNS protocols.

Mockapetris wrote the first implementation of DNS. The following year (1984), four Berkeley students Douglas Terry, Mark Painter, David Riggle and Songnian Zhau wrote the first Unix implementation. Ralph Campbell maintained Terry et al's work after that. In 1985, Kevin Dunlap of Digital Equipment Corporation significantly re-wrote the DNS implementation and renamed it BIND. Mike Kavels, Phil Almquist and Paul Vixie have maintained BIND since then. A port of BIND to the Windows NT platform took place in the early 1990s. Due to its long history of security issues, a number of alternative nameserver/resolver programs have been written and distributed by others in recent years.

How the DNS works in theory

Domain names, arranged in a tree, cut into zones, each served by a nameserver.
Domain names, arranged in a tree, cut into zones, each served by a nameserver.

The domain name space consists of a tree of domain names. Each node or leaf in the tree has one or more resource records, which hold information associated with the domain name. The tree sub-divides into zones. A zone consists of a collection of connected nodes authoritatively served by an authoritative DNS nameserver. (Note that a single nameserver can host several zones.)

When a system administrator wants to let another administrator control a part of the domain name space within his or her zone of authority, he or she can delegate control to the other administrator. This splits a part of the old zone off into a new zone, which comes under the authority of the second administrator's nameservers. The old zone becomes no longer authoritative for what comes under the authority of the new zone.

A resolver looks up the information associated with nodes. A resolver knows how to communicate with name servers by sending DNS requests, and heeding DNS responses. Resolving usually entails recursing through several name servers to find the needed information.

Some resolvers function simplistically and can only communicate with a single name server. These simple resolvers rely on a recursing name server to perform the work of finding information for them.

Understanding the parts of a domain name

A domain name usually consists of two or more parts (technically labels), separated by dots. For example wikipedia.org.

  • The rightmost label conveys the top-level domain (for example, the address en.wikipedia.org has the top-level domain org).
  • Each label to the left specifies a subdivision or subdomain of the domain above it. Note that "subdomain" expresses relative dependence, not absolute dependence: for example, wikipedia.org comprises a subdomain of the org domain, and en.wikipedia.org comprises a subdomain of the domain wikipedia.org. In theory, this subdivision can go down to 127 levels deep, and each label can contain up to 63 characters, as long as the whole domain name does not exceed a total length of 255 characters. But in practice some domain registries have shorter limits than that.
  • A hostname refers to a domain name that has one or more associated IP addresses. For example, the en.wikipedia.org and wikipedia.org domains are both hostnames, but the org domain is not.

The DNS consists of a hierarchical set of DNS servers. Each domain or subdomain has one or more authoritative DNS servers that publish information about that domain and the name servers of any domains "beneath" it. The hierarchy of authoritative DNS servers matches the hierarchy of domains. At the top of the hierarchy stand the root servers: the servers to query when looking up (resolving) a top-level domain name (TLD).

The address resolution mechanism

(This description deliberately uses the fictional .example TLD in accordance with the DNS guidelines themselves.)

In theory a full host name may have several name segments, (e.g ahost.ofasubnet.ofabiggernet.inadomain.example). In practice, in the experience of the majority of public users of Internet services, full host names will frequently consist of just three segments (ahost.inadomain.example, and most often www.inadomain.example).

For querying purposes, software interprets the name segment by segment, from right to left, using an iterative search procedure. At each step along the way, the program queries a corresponding DNS server to provide a pointer to the next server which it should consult.

A DNS recurser consults three nameservers to resolve the address www.wikipedia.org.
A DNS recurser consults three nameservers to resolve the address www.wikipedia.org.

As originally envisaged, the process was as simple as:

  1. the local system is pre-configured with the known addresses of the root servers in a file of root hints, which need to be updated periodically by the local administrator from a reliable source to be kept up to date with the changes which occur over time.
  2. query one of the root servers to find the server authoritative for the next level down (so in the case of our simple hostname, a root server would be asked for the address of a server with detailed knowledge of the example top level domain).
  3. querying this second server for the address of a DNS server with detailed knowledge of the second-level domain (inadomain.example in our example).
  4. repeating the previous step to progress down the name, until the final step which would, rather than generating the address of the next DNS server, return the final address sought.

The diagram illustrates this process for the real host www.wikipedia.org.

The mechanism in this simple form has a difficulty: it places a huge operating burden on the collective of root servers, with each and every search for an address starting by querying one of them. Being as critical as they are to the overall function of the system such heavy use would create an insurmountable bottleneck for trillions of queries placed every day. In practice there are two key additions to the mechanism.

  • Firstly, the DNS resolution process allows for local recording and subsequent consultation of the results of a query (or caching) for a period of time after a successful answer (the server providing the answer initially dictates the period of validity, which may vary from just seconds to days or even weeks). In our illustration, having found a list of addresses of servers capable of answering queries about the .example domain, the local resolver will not need to make the query again until the validity of the currently known list expires, and so on for all subsequent steps. Hence having successfully resolved the address of ahost.inadomain.example it is not necessary to repeat the process for some time since the address already reached will be deemed reliable for a defined period, and resolution of anotherhost.anotherdomain.example can commence with already knowing which servers can answer queries for the .example domain. Caching significantly reduces the rate at which the most critical name servers have to respond to queries, adding the extra benefit that subsequent resolutions are not delayed by network transit times for the queries and responses.
  • Secondly, most domestic and small-business clients "hand off" address resolution to their ISP's DNS servers to perform the look-up process, thus allowing for the greatest benefit from those same ISPs having busy local caches serving a wide variety of queries and a large number of users.

For further discussion in greater detail of these additions to the mechanism see below.

Circular dependencies and glue records

Name servers in delegations appear listed by name, rather than by IP address. This means that a resolving name server must issue another DNS request to find out the IP address of the server to which it has been referred. Since this can introduce a circular dependency if the nameserver referred to is under the domain that it is authoritative of, it is occasionally necessary for the nameserver providing the delegation to also provide the IP address of the next nameserver. This record is called a glue record.

For example, assume that the sub-domain en.wikipedia.org contains further sub-domains (such as something.en.wikipedia.org) and that the authoritative nameserver for these lives at ns1.en.wikipedia.org. A computer trying to resolve something.en.wikipedia.org will thus first have to resolve ns1.en.wikipedia.org. Since ns1 is also under the en.wikipedia.org subdomain, resolving something.en.wikipedia.org requires resolving ns1.en.wikipedia.org which is exactly the circular dependency mentioned above. The dependency is broken by the glue record in the nameserver of wikipedia.org that provides the IP address of ns1.en.wikipedia.org directly to the requestor, enabling it to bootstrap the process by figuring out where ns1.en.wikipedia.org is located.

DNS in practice

When an application (such as a web browser) tries to find the IP address of a domain name, it doesn't necessarily follow all of the steps outlined in the Theory section above. We will first look at the concept of caching, and then outline the operation of DNS in "the real world."

Caching and time to live

Because of the huge volume of requests generated by a system like the DNS, the designers wished to provide a mechanism to reduce the load on individual DNS servers. The mechanism devised provided that when a DNS resolver (i.e. client) received a DNS response, it would cache that response for a given period of time. A value (set by the administrator of the DNS server handing out the response) called the time to live (TTL), defines that period of time. Once a response goes into cache, the resolver will consult its cached (stored) answer; only when the TTL expires (or when an administrator manually flushes the response from the resolver's memory) will the resolver contact the DNS server for the same information.

Generally, the Start of Authority (SOA) record specifies the time to live. The SOA record has the parameters:

  • Serial the zone serial number, incremented when the zone file is modified, so the slave and secondary name servers know when the zone has been changed and should be reloaded.
  • Refresh the number of seconds between update requests from secondary and slave name servers.
  • Retry the number of seconds the secondary or slave will wait before retrying when the last attempt has failed.
  • Expire the number of seconds a master or slave will wait before considering the data stale if it cannot reach the primary name server.
  • Minimum previously used to determine the minimum TTL, this offers negative caching.

(Newer versions of BIND (named) will accept the suffixes 'M','H','D' or 'W', indicating a time-interval of minutes, hours, days and weeks respectively.)

Caching time

As a noteworthy consequence of this distributed and caching architecture, changes to the DNS do not always take effect immediately and globally. This is best explained with an example: If an administrator has set a TTL of 6 hours for the host www.wikipedia.org, and then changes the IP address to which www.wikipedia.org resolves at 12:01pm, the administrator must consider that a person who cached a response with the old IP Address at 12:00pm will not consult the DNS server again until 6:00pm. The period between 12:01pm and 6:00pm in this example is called caching time, which is best defined as a period of time that begins when you make a change to a DNS record and ends after the maximum amount of time specified by the TTL expires. This essentially leads to an important logistical consideration when making changes to the DNS: not everyone is necessarily seeing the same thing you're seeing. RFC1537 helps to convey basic rules for how to set the TTL.

Note that the term "propagation", although very widely used, does not describe the effects of caching well. Specifically, it implies that [1] when you make a DNS change, it somehow spreads to all other DNS servers (instead, other DNS servers check in with yours as needed), and [2] that you do not have control over the amount of time the record is cached (you control the TTL values for all DNS records in your domain, except your NS records and any authoritative DNS servers that use your domain name).

Some resolvers may override TTL values, as the protocol supports caching for up to 68 years or no caching at all. Negative caching (the non-existence of records) is determined by name servers authoritative for a zone which MUST include the SOA record when reporting no data of the requested type exists. The MINIMUM field of the SOA record and the TTL of the SOA itself is used to establish the TTL for the negative answer. RFC2308

Many people incorrectly refer to a mysterious 48 hour or 72 hour propagation time when you make a DNS change. When one changes the NS records for one's domain or the IP addresses for hostnames of authoritative DNS servers using one's domain (if any), there can be a lengthy period of time before all DNS servers use the new information. This is because those records are handled by the zone parent DNS servers (for example, the .com DNS servers if your domain is example.com), which typically cache those records for 48 hours. However, those DNS changes will be immediately available for any DNS servers that do not have them cached. And, any DNS changes on your domain other than the NS records and authoritative DNS server names can be nearly instantaneous, if you choose for them to be (by lowering the TTL once or twice ahead of time, and waiting until the old TTL expires before making the change).

DNS in the real world

DNS resolving from program to OS-resolver to ISP-resolver to greater system.
DNS resolving from program to OS-resolver to ISP-resolver to greater system.

Users generally do not communicate directly with a DNS resolver. Instead DNS resolution takes place transparently in client applications such as web browsers (like Internet Explorer, Opera, Mozilla Firefox, Safari, Netscape Navigator, etc), mail clients (Outlook Express, Mozilla Thunderbird, etc), and other Internet applications. When a request is made which necessitates a DNS lookup, such programs send a resolution request to the local DNS resolver in the operating system which in turn handles the communications required.

The DNS resolver will almost invariably have a cache (see above) containing recent lookups. If the cache can provide the answer to the request, the resolver will return the value in the cache to the program that made the request. If the cache does not contain the answer, the resolver will send the request to a designated DNS server or servers. In the case of most home users, the Internet service provider to which the machine connects will usually supply this DNS server: such a user will either configure that server's address manually or allow DHCP to set it; however, where systems administrators have configured systems to use their own DNS servers, their DNS resolvers will generally point to their own nameservers. This name server will then follow the process outlined above in DNS in theory, until it either successfully finds a result, or does not. It then returns its results to the DNS resolver; assuming it has found a result, the resolver duly caches that result for future use, and hands the result back to the software which initiated the request.

Broken resolvers

An additional level of complexity emerges when resolvers violate the rules of the DNS protocol. Some people have suggested that a number of large ISPs have configured their DNS servers to violate rules (presumably to allow them to run on less-expensive hardware than a fully compliant resolver), such as by disobeying TTLs, or by indicating that a domain name does not exist just because one of its name servers does not respond.

As a final level of complexity, some applications such as Web browsers also have their own DNS cache, in order to reduce use of the DNS resolver library itself. This practice can add extra difficulty to DNS debugging, as it obscures which data is fresh, or lies in which cache. These caches typically have very short caching times of the order of 1 minute. A notable exception is Internet Explorer; recent versions cache DNS records for 30 minutes.[1]

Other DNS applications

The system outlined above provides a somewhat simplified scenario. The DNS includes several other functions:

  • Hostnames and IP addresses do not necessarily match on a one-to-one basis. Many hostnames may correspond to a single IP address: combined with virtual hosting, this allows a single machine to serve many web sites. Alternatively a single hostname may correspond to many IP addresses: this can facilitate fault tolerance and load distribution, and also allows a site to move physical location seamlessly.
  • There are many uses of DNS besides translating names to IP addresses. For instance, Mail transfer agents use DNS to find out where to deliver e-mail for a particular address. The domain to mail exchanger mapping provided by MX records accommodates another layer of fault tolerance and load distribution on top of the name to IP address mapping.
  • Sender Policy Framework and DomainKeys instead of creating own record types were designed to take advantage of another DNS record type, the TXT record.
  • To provide resilience in the event of computer failure, multiple DNS servers provide coverage of each domain. In particular, thirteen root servers exist worldwide. DNS programs or operating systems have the IP addresses of these servers built in. At least nominally, the USA hosts all but three of the root servers. However, because many root servers actually implement anycast, where many different computers can share the same IP address to deliver a single service over a large geographic region, most of the physical (rather than nominal) root servers now operate outside the USA.

The DNS uses TCP and UDP on port 53 to serve requests. Almost all DNS queries consist of a single UDP request from the client followed by a single UDP reply from the server. TCP typically comes into play only when the response data size exceeds 512 bytes, or for such tasks as zone transfer. Some operating systems such as HP-UX are known to have resolver implementations that use TCP for all queries, even when UDP would suffice.

Extensions to DNS

EDNS is an extension of the DNS protocol which enhances the transport of DNS data in UDP packages, and adds support for expanding the space of request and response codes. It is described in RFC 2671.

Implementations of DNS

For a commented list of DNS server-side implementations, see Comparison of DNS server software.

Standards

  • RFC 882 Concepts and Facilities (Deprecated by RFC 1034)
  • RFC 883 Domain Names: Implementation specification (Deprecated by RFC 1035)
  • RFC 1032 Domain administrators guide
  • RFC 1033 Domain administrators operations guide
  • RFC 1034 Domain Names - Concepts and Facilities.
  • RFC 1035 Domain Names - Implementation and Specification
  • RFC 1101 DNS Encodings of Network Names and Other Types
  • RFC 1123 Requirements for Internet Hosts -- Application and Support
  • RFC 1183 New DNS RR Definitions
  • RFC 1706 DNS NSAP Resource Records
  • RFC 1876 Location Information in the DNS (LOC)
  • RFC 1886 DNS Extensions to support IP version 6
  • RFC 1912 Common DNS Operational and Configuration Errors
  • RFC 1995 Incremental Zone Transfer in DNS
  • RFC 1996 A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)
  • RFC 2136 Dynamic Updates in the domain name system (DNS UPDATE)
  • RFC 2181 Clarifications to the DNS Specification
  • RFC 2182 Selection and Operation of Secondary DNS Servers
  • RFC 2308 Negative Caching of DNS Queries (DNS NCACHE)
  • RFC 2317 Classless IN-ADDR.ARPA delegation
  • RFC 2671 Extension Mechanisms for DNS (EDNS0)
  • RFC 2672 Non-Terminal DNS Name Redirection (DNAME record)
  • RFC 2782 A DNS RR for specifying the location of services (DNS SRV)
  • RFC 2845 Secret Key Transaction Authentication for DNS (TSIG)
  • RFC 2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering
  • RFC 3403 Dynamic Delegation Discovery System (DDDS) (NAPTR records)
  • RFC 3696 Application Techniques for Checking and Transformation of Names
  • RFC 4398 Storing Certificates in the Domain Name System
  • RFC 4408 Sender Policy Framework (SPF) (SPF records)

Types of DNS records

Important categories of data stored in the DNS include the following:

  • An A record or address record maps a hostname to a 32-bit IPv4 address.
  • An AAAA record or IPv6 address record maps a hostname to a 128-bit IPv6 address.
  • A CNAME record or canonical name record is an alias of one name to another. The A record that the alias is pointing to can be either local or remote - on a foreign name server. Useful when running multiple services from a single IP address, where each service has its own entry in DNS.
  • An MX record or mail exchange record maps a domain name to a list of mail exchange servers for that domain.
  • A PTR record or pointer record maps an IPv4 address to the canonical name for that host. Setting up a PTR record for a hostname in the in-addr.arpa domain that corresponds to an IP address implements reverse DNS lookup for that address. For example (at the time of writing), www.icann.net has the IP address 192.0.34.164, but a PTR record maps 164.34.0.192.in-addr.arpa to its canonical name, referrals.icann.org.
  • An NS record or name server record maps a domain name to a list of DNS servers authoritative for that domain. Delegations depend on NS records.
  • An SOA record or start of authority record specifies the DNS server providing authoritative information about an Internet domain, the email of the domain administrator, the domain serial number, and several timers relating to refreshing the zone.
  • An SRV record is a generalized service location record.
  • A TXT record allows an administrator to insert arbitrary text into a DNS record. For example, this record is used to implement the Sender Policy Framework and DomainKeys specifications.
  • NAPTR records ("Naming Authority Pointer") are a newer type of DNS record that support regular expression based rewriting.

Other types of records simply provide information (for example, a LOC record gives the physical location of a host), or experimental data (for example, a WKS record gives a list of servers offering some well known service such as HTTP or POP3 for a domain).

Internationalised domain names

Main article: Internationalized domain name

While domain names in the DNS have no restrictions on the characters they use and can include non-ASCII characters, the same is not true for host names. Host names are the names most people see and use for things like e-mail and web browsing. Host names are restricted to a small subset of the ASCII character set that includes the Roman alphabet in upper and lower case, the digits 0 through 9, the dot, and the hyphen. (See RFC3696 section 2 for details.) This prevented the representation of names and words of many languages natively. ICANN has approved the Punycode-based IDNA system, which maps Unicode strings into the valid DNS character set, as a workaround to this issue. Some registries have adopted IDNA.

Security issues in DNS

DNS was not originally designed with security in mind, and thus has a number of security issues. DNS responses are traditionally not cryptographically signed, leading to many attack possibilities; DNSSEC modifies DNS to add support for cryptographically signed responses. There are various extensions to support securing zone transfer information as well.

Some domain names can spoof other, similar-looking domain names. For example, "paypal.com" and "paypa1.com" are different names, yet users may be unable to tell the difference. This problem is much more serious in systems that support internationalized domain names, since many characters that are different (from the point of view of ISO 10646) appear identical on typical computer screens.

Legal users of domains

Registrant

No one in the world really "owns" a domain name except the Network Information Centre (NIC), or domain name registry. Most of the NICs in the world receive an annual fee from a legal user in order for the legal user to utilize the domain name (i.e. a sort of a leasing agreement exists, subject to the registry's terms and conditions). Depending on the various naming convention of the registries, legal users become commonly known as "registrants" or as "domain holders".

ICANN holds a complete list of domain registries in the world. One can find the legal user of a domain name by looking in the WHOIS database held by most domain registries.

For most of the more than 240 country code top-level domains (ccTLDs), the domain registries hold the authoritative WHOIS (Registrant, name servers, expiry dates etc). For instance, DENIC, Germany NIC holds the authoritative WHOIS to a .DE domain name.

However, some domain registries, such as for .COM, .ORG, .INFO, etc., use a registry-registrar model. There are hundreds of Domain Name Registrars that actually perform the domain name registration with the end-user (see lists at ICANN or VeriSign). By using this method of distribution, the registry only has to manage the relationship with the registrar, and the registrar maintains the relationship with the end-users, or 'registrants'. For .COM, .NET domain names, the domain registries, VeriSign holds a basic WHOIS (registrar and name servers etc). One can find the detailed WHOIS (Registrant, name servers, expiry dates etc) at the registrars.

Since about 2001, most gTLD registries (.ORG, .BIZ, .INFO) have adopted a so-called "thick" registry approach, i.e. keeping the authoritative WHOIS with the various registries instead of the registrars.

Administrative contact

A registrant usually designates an administrative contact to manage the domain name. In practice, the administrative contact usually has the most immediate power over a domain. Management functions delegated to the administrative contacts may include (for example):

  • the obligation to conform to the requirements of the domain registry in order to retain the right to use a domain name
  • authorisation to update the physical address, e-mail address and telephone number etc in WHOIS

Technical contact

A technical contact manages the name servers of a domain name. The many functions of a technical contact include:

  • making sure the configurations of the domain name conforms to the requirements of the domain registry
  • updating the domain zone
  • providing the 24x7 functionality of the name servers (that leads to the accessibility of the domain name)

Billing contact

The party whom a NIC invoices.

Name servers

Namely the authoritative name servers that host the domain name zone of a domain name.

Politics

Many investigators have voiced criticism of the methods currently used to control ownership of domains. Critics commonly claim abuse by monopolies or near-monopolies, such as VeriSign, Inc. Particularly noteworthy was the VeriSign Site Finder system which redirected all unregistered .com and .net domains to a VeriSign webpage. Despite widespread criticism, VeriSign only reluctantly removed it after ICANN threatened to revoke its contract to administer the root name servers.

There is also significant disquiet regarding United States political influence over the Internet Corporation for Assigned Names and Numbers (ICANN). This was a significant issue in the attempt to create a .xxx Top-level domain and sparked greater interest in Alternative DNS roots that would be beyond the control of any single country.

Truth in Domain Names Act

In the United States, the "Truth in Domain Names Act", in combination with the PROTECT Act, forbids the use of a misleading domain name with the intention of attracting people into viewing a visual depiction of sexually explicit conduct on the Internet.

See also

  • Cybersquatting
  • Domain hack
  • Dynamic DNS
  • DNS cache poisoning
  • DNSSEC
  • ICANN
  • Root nameserver
  • DNS hosting service
  • EveryDNS
  • Geodomain
  • NBNS
  • NIS
  • Hesiod
  • OpenDNS

References

  1. ^ How Internet Explorer uses the cache for DNS host entries. Microsoft (2004). Retrieved on 2006-03-07.

External links

web-based DNS tools at the Open Directory Project

Retrieved from "http://en.wikipedia.org/wiki/Domain_name_system"