WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Adobe Reader
  2. Adware
  3. Altavista
  4. AOL
  5. Apple Macintosh
  6. Application software
  7. Arrow key
  8. Artificial Intelligence
  9. ASCII
  10. Assembly language
  11. Automatic translation
  12. Avatar
  13. Babylon
  14. Bandwidth
  15. Bit
  16. BitTorrent
  17. Black hat
  18. Blog
  19. Bluetooth
  20. Bulletin board system
  21. Byte
  22. Cache memory
  23. Celeron
  24. Central processing unit
  25. Chat room
  26. Client
  27. Command line interface
  28. Compiler
  29. Computer
  30. Computer bus
  31. Computer card
  32. Computer display
  33. Computer file
  34. Computer games
  35. Computer graphics
  36. Computer hardware
  37. Computer keyboard
  38. Computer networking
  39. Computer printer
  40. Computer program
  41. Computer programmer
  42. Computer science
  43. Computer security
  44. Computer software
  45. Computer storage
  46. Computer system
  47. Computer terminal
  48. Computer virus
  49. Computing
  50. Conference call
  51. Context menu
  52. Creative commons
  53. Creative Commons License
  54. Creative Technology
  55. Cursor
  56. Data
  57. Database
  58. Data storage device
  59. Debuggers
  60. Demo
  61. Desktop computer
  62. Digital divide
  63. Discussion groups
  64. DNS server
  65. Domain name
  66. DOS
  67. Download
  68. Download manager
  69. DVD-ROM
  70. DVD-RW
  71. E-mail
  72. E-mail spam
  73. File Transfer Protocol
  74. Firewall
  75. Firmware
  76. Flash memory
  77. Floppy disk drive
  78. GNU
  79. GNU General Public License
  80. GNU Project
  81. Google
  82. Google AdWords
  83. Google bomb
  84. Graphics
  85. Graphics card
  86. Hacker
  87. Hacker culture
  88. Hard disk
  89. High-level programming language
  90. Home computer
  91. HTML
  92. Hyperlink
  93. IBM
  94. Image processing
  95. Image scanner
  96. Instant messaging
  97. Instruction
  98. Intel
  99. Intel Core 2
  100. Interface
  101. Internet
  102. Internet bot
  103. Internet Explorer
  104. Internet protocols
  105. Internet service provider
  106. Interoperability
  107. IP addresses
  108. IPod
  109. Joystick
  110. JPEG
  111. Keyword
  112. Laptop computer
  113. Linux
  114. Linux kernel
  115. Liquid crystal display
  116. List of file formats
  117. List of Google products
  118. Local area network
  119. Logitech
  120. Machine language
  121. Mac OS X
  122. Macromedia Flash
  123. Mainframe computer
  124. Malware
  125. Media center
  126. Media player
  127. Megabyte
  128. Microsoft
  129. Microsoft Windows
  130. Microsoft Word
  131. Mirror site
  132. Modem
  133. Motherboard
  134. Mouse
  135. Mouse pad
  136. Mozilla Firefox
  137. Mp3
  138. MPEG
  139. MPEG-4
  140. Multimedia
  141. Musical Instrument Digital Interface
  142. Netscape
  143. Network card
  144. News ticker
  145. Office suite
  146. Online auction
  147. Online chat
  148. Open Directory Project
  149. Open source
  150. Open source software
  151. Opera
  152. Operating system
  153. Optical character recognition
  154. Optical disc
  155. output
  156. PageRank
  157. Password
  158. Pay-per-click
  159. PC speaker
  160. Peer-to-peer
  161. Pentium
  162. Peripheral
  163. Personal computer
  164. Personal digital assistant
  165. Phishing
  166. Pirated software
  167. Podcasting
  168. Pointing device
  169. POP3
  170. Programming language
  171. QuickTime
  172. Random access memory
  173. Routers
  174. Safari
  175. Scalability
  176. Scrollbar
  177. Scrolling
  178. Scroll wheel
  179. Search engine
  180. Security cracking
  181. Server
  182. Simple Mail Transfer Protocol
  183. Skype
  184. Social software
  185. Software bug
  186. Software cracker
  187. Software library
  188. Software utility
  189. Solaris Operating Environment
  190. Sound Blaster
  191. Soundcard
  192. Spam
  193. Spamdexing
  194. Spam in blogs
  195. Speech recognition
  196. Spoofing attack
  197. Spreadsheet
  198. Spyware
  199. Streaming media
  200. Supercomputer
  201. Tablet computer
  202. Telecommunications
  203. Text messaging
  204. Trackball
  205. Trojan horse
  206. TV card
  207. Unicode
  208. Uniform Resource Identifier
  209. Unix
  210. URL redirection
  211. USB flash drive
  212. USB port
  213. User interface
  214. Vlog
  215. Voice over IP
  216. Warez
  217. Wearable computer
  218. Web application
  219. Web banner
  220. Web browser
  221. Web crawler
  222. Web directories
  223. Web indexing
  224. Webmail
  225. Web page
  226. Website
  227. Wiki
  228. Wikipedia
  229. WIMP
  230. Windows CE
  231. Windows key
  232. Windows Media Player
  233. Windows Vista
  234. Word processor
  235. World Wide Web
  236. Worm
  237. XML
  238. X Window System
  239. Yahoo
  240. Zombie computer
 



MY COMPUTER
This article is from:
http://en.wikipedia.org/wiki/Liquid_crystal_display

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Liquid crystal display

From Wikipedia, the free encyclopedia

 
Reflective twisted nematic liquid crystal display. Vertical filter film to polarize the light as it enters. Glass substrate with ITO electrodes. The shapes of these electrodes will determine the dark shapes that will appear when the LCD is turned on or off. Vertical ridges etched on the surface are smooth.Twisted nematic liquid crystals. Glass substrate with common electrode film (ITO) with horizontal ridges to line up with the horizontal filter. Horizontal filter film to block/allow through light. Reflective surface to send light back to viewer.
Reflective twisted nematic liquid crystal display.
  1. Vertical filter film to polarize the light as it enters.
  2. Glass substrate with ITO electrodes. The shapes of these electrodes will determine the dark shapes that will appear when the LCD is turned on or off. Vertical ridges etched on the surface are smooth.
  3. Twisted nematic liquid crystals.
  4. Glass substrate with common electrode film (ITO) with horizontal ridges to line up with the horizontal filter.
  5. Horizontal filter film to block/allow through light.
  6. Reflective surface to send light back to viewer.
A subpixel of a color LCD
A subpixel of a color LCD

A liquid crystal display (LCD) is a thin, flat display device made up of any number of color or monochrome pixels arrayed in front of a light source or reflector. It is prized by engineers because it uses very small amounts of electric power, and is therefore suitable for use in battery-powered electronic devices.LCDs are commonly called LCD displays but this is wrong as it traslates as: "liquid crystal display displays."

Overview

Each pixel of an LCD consists of a layer of liquid crystal molecules aligned between two transparent electrodes, and two polarizing filters, the axes of polarity of which are perpendicular to each other. With no liquid crystal between the polarizing filters, light passing through one filter would be blocked by the other.

The surfaces of the electrodes that are in contact with the liquid crystal material are treated so as to align the liquid crystal molecules in a particular direction. This treatment typically consists of a thin polymer layer that is unidirectionally rubbed using a cloth (the direction of the liquid crystal alignment is defined by the direction of rubbing).

Before applying an electric field, the orientation of the liquid crystal molecules is determined by the alignment at the surfaces. In a twisted nematic device (the most common liquid crystal device), the surface alignment directions at the two electrodes are perpendicular, and so the molecules arrange themselves in a helical structure, or twist. Because the liquid crystal material is birefringent (i.e. light of different polarizations travels at different speeds through the material), light passing through one polarizing filter is rotated by the liquid crystal helix as it passes through the liquid crystal layer, allowing it to pass through the second polarized filter. Half of the light is absorbed by the first polarizing filter, but otherwise the entire assembly is transparent.

When a voltage is applied across the electrodes, a torque acts to align the liquid crystal molecules parallel to the electric field, distorting the helical structure (this is resisted by elastic forces since the molecules are constrained at the surfaces). This reduces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules are completely untwisted and the polarization of the incident light is not rotated at all as it passes through the liquid crystal layer. This light will then be polarized perpendicular to the second filter, and thus be completely blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts, correspondingly illuminating the pixel.

With a twisted nematic liquid crystal device it is usual to operate the device between crossed polarizers, such that it appears bright with no applied voltage. With this setup, the dark voltage-on state is uniform. The device can be operated between parallel polarizers, in which case the bright and dark states are reversed (in this configuration, the dark state appears blotchy).

Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided by applying either an alternating current, or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

When a large number of pixels is required in a display, it is not feasible to drive each directly since then each pixel would require independent electrodes. Instead, the display is multiplexed. In a multiplexed display, electrodes on one side of the display are grouped and wired together (typically in columns), and each group gets its own voltage source. On the other side, the electrodes are also grouped (typically in rows), with each group getting a voltage sink. The groups are designed so each pixel has a unique, unshared combination of source and sink. The electronics, or the software driving the electronics then turns on sinks in sequence, and drives sources for the pixels of each sink.

Specifications of LCD

Important factors to consider when evaluating an LCD monitor include

  • resolution: unlike CRT monitors, LCD monitors have a native-supported resolution for best display effect.
  • dot pitch(Dot Pitch): the granularity of LCD pixels. The smaller, the better.
  • viewable size: The length of diagonal of a LCD panel
  • response time (sync rate)
  • matrix type (passive or active)
  • viewing angle
  • color support: How many types of colors are supported.
  • brightness
  • contrast ratio
  • aspect ratio: 4 by 3, or 16 by 9, etc.
  • input ports (e.g. DVI,VGA, or even S-Video ).

Brief history

1904: Otto Lehmann publishes his work "Liquid Crystals"

1911: Charles Mauguin describes the structure and properties of liquid crystals.

1936: The Marconi Wireless Telegraph company patents the first practical application of the technology, "The Liquid Crystal Light Valve".

1962: The first major English language publication on the subject "Molecular Structure and Properties of Liquid Crystals", by Dr. George W. Gray.

Pioneering work on liquid crystals was undertaken in the late 1960s by the UK's Royal Radar Establishment at Malvern. The team at RRE supported ongoing work by George Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals (which had correct stability and temperature properties for application in LCDs).

The first operational LCD was based on the Dynamic Scattering Mode (DSM) and was introduced in 1968 by a group at RCA in the USA headed by George Heilmeier. Heilmeier founded Optel, which introduced a number of LCDs based on this technology.

In December 1970, the twisted nematic field effect in liquid crystals was filed for patent by M. Schadt and W. Helfrich, then working for the Central Research Laboratories of Hoffmann-LaRoche in Switzerland (Swiss patent No. 532 261). James Fergason at Kent State University filed an identical patent in the USA in February 1971. In 1971 the company of Fergason ILIXCO (now LXD Incorporated) produced the first LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due improvements of lower operating voltages and lower power consumption.

In 1972, the first active-matrix liquid crystal display panel was produced in the United States by T. Peter Brody.[1]

Color displays

Wikipedia's logo displayed on an LCD monitor.
Wikipedia's logo displayed on an LCD monitor.

In color LCDs each individual pixel is divided into three cells, or subpixels, which are colored red, green, and blue, respectively, by additional filters (pigment filters, dye filters and metal oxide filters). Each subpixel can be controlled independently to yield thousands or millions of possible colors for each pixel. Older CRT monitors employ a similar method.

Color components may be arrayed in various pixel geometries, depending on the monitor's usage. If software knows which type of geometry is being used in a given LCD, this can be used to increase the apparent resolution of the monitor through subpixel rendering. This technique is especially useful for text anti-aliasing.

Passive-matrix and active-matrix

A general purpose alphanumeric LCD, with two lines of 16 characters.
A general purpose alphanumeric LCD, with two lines of 16 characters.

LCDs with a small number of segments, such as those used in digital watches and pocket calculators, have a single electrical contact for each segment. An external dedicated circuit supplies an electric charge to control each segment. This display structure is unwieldy for more than a few display elements.

Small monochrome displays such as those found in personal organizers, or older laptop screens have a passive-matrix structure employing supertwist nematic (STN) or double-layer STN (DSTN) technology (DSTN corrects a color-shifting problem with STN). Each row or column of the display has a single electrical circuit. The pixels are addressed one at a time by row and column addresses. This type of display is called a passive matrix because the pixel must retain its state between refreshes without the benefit of a steady electrical charge. As the number of pixels (and, correspondingly, columns and rows) increases, this type of display becomes less feasible. Very slow response times and poor contrast are typical of passive-matrix LCDs.

High-resolution color displays such as modern LCD computer monitors and televisions use an active matrix structure. A matrix of thin-film transistors (TFTs) is added to the polarizing and color filters. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is activated, all of the column lines are connected to a row of pixels and the correct voltage is driven onto all of the column lines. The row line is then deactivated and the next row line is activated. All of the row lines are activated in sequence during a refresh operation. Active-matrix displays are much brighter and sharper than passive-matrix displays of the same size, and generally have quicker response times, producing much better images.

Active matrix technologies

Main article: TFT LCD, Active-matrix liquid crystal display

Twisted nematic (TN)

Twisted nematic displays contain liquid crystal elements which twist and untwist at varying degrees to allow light to pass through. When no voltage is applied to a TN liquid crystal cell, the light is polarized to pass through the cell. In proportion to the voltage applied, the LC cells twist up to 90 degrees changing the polarization and blocking the light's path. By properly adjusting the level of the voltage almost any grey level or transmission can be achieved.

 

3LCD Display Technology

3LCD is a video projection system that uses three LCD microdisplay panels to produce an image. It was adopted in 1995 by numerous front projector manufacturers and in 2002 by rear projection TV manufacturers for its compactness and image quality.

3LCD is an active-matrix, HTPS (high-temperature polysilicon) LCD projection technology. It inherits sharp images, brightness and excellent color reproduction from its active matrix technology. Deeper blacks are contributed by the HTPS technology.

The 3LCD website describes the technology in detail and is supported by various companies including 3LCD manufacturers and vendors.

In-plane switching (IPS)

In-plane switching is an LCD technology which aligns the liquid crystal cells in a horizontal direction. In this method, the electrical field is applied through each end of the crystal, but this requires two transistors for each pixel instead of the one needed for a standard thin-film transistor (TFT) display. This results in blocking more transmission area requiring brighter backlights, which consume more power making this type of display undesirable for notebook computers.

Quality control

Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits, LCD panels with a few defective pixels are usually still usable. It is also economically prohibitive to discard a panel with just a few defective pixels because LCD panels are much larger than ICs. Manufacturers have different standards for determining a maximum acceptable number of defective pixels. The maximum acceptable number of defective pixels for LCD varies a lot (such as zero-tolerance policy[1] and 11-dead-pixel policy [citation needed] ) from one brand to another, often a hot debate between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard[2]. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways.

Examples of defects in LCD displays
Examples of defects in LCD displays

LCD panels are more likely to have defects than most ICs due to their larger size. In this example, a 12" SVGA LCD has 8 defects and a 6" wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the LCD panel would be a 0% yield. The standard is much higher now due to fierce competition between manufacturers and improved quality control. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one. Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have "zero defective pixel guarantee" and would replace a product even with one defective pixel. Even where such guarantees do not exist, the location of defective pixels is important. A display with only a few defective pixels may be unacceptable if the defective pixels are near each other. Manufacturers may also relax their replacement criteria when defective pixels are in the center of the viewing area.

Zero-power displays

The zenithal bistable device (ZBD), developed by QinetiQ (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations (Black and "White") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufacture both grayscale and colour ZBD devices.

A French company, Nemoptic, has developed another zero-power, paper-like LCD technology which has been mass-produced in Taiwan since July 2003. This technology is intended for use in low-power mobile applications such as e-books and wearable computers. Zero-power LCDs are in competition with electronic paper.

Kent Displays has also developed a "no power" display that uses Polymer Stabilized Cholesteric Liquid Crystals (ChLCD). The major drawback to the ChLCD display is slow refresh rate, especially with low temperatures.

Drawbacks

fractured LCD screen
fractured LCD screen

LCD technology still has a few drawbacks in comparison to some other display technologies:

  • While CRTs are capable of displaying multiple video resolutions without introducing artifacts, LCD displays produce crisp images only in their "native resolution" and, sometimes, fractions of that native resolution. Attempting to run LCD display panels at non-native resolutions usually results in the panel scaling the image, which introduces blurriness or "blockiness".
  • LCD displays have a lower contrast ratio than that on a plasma display or CRT. This is due to their "light valve" nature: some light always leaks out and turns black into gray. In brightly lit rooms the contrast of LCD monitors can, however, exceed some CRT displays due to higher maximum brightness.
  • LCDs have longer response time than their plasma and CRT counterparts, older displays creating visible ghosting when images rapidly change; this drawback, however, is continually improving as the technology progresses and is hardly noticeable in current LCD displays with "overdrive" technology. Most newer LCDs have response times of around 8 ms.
  • In addition to the response times, some LCD panels have significant input lag, which makes them unsuitable for fast and time-precise mouse operations (CAD design, FPS gaming) as compared to CRTs
  • Overdrive technology on some panels can produce artifacts across regions of rapidly transitioning pixels (eg. video images) that looks like increased image noise or halos. This is a side effect of the pixels being driven past their intended brightness value (or rather the intended voltage necessary to produce this necessary brightness/colour) and then allowed to fall back to the target brightness in order to enhance response times.
  • LCD display panels have a limited viewing angle, thus reducing the number of people who can conveniently view the same image. As the viewer moves closer to the limit of the viewing angle, the colors and contrast appear to deteriorate. However, this negative has actually been capitalized upon in two ways. Some vendors offer screens with intentionally reduced viewing angle, to provide additional privacy, such as when someone is using a laptop in a public place. Such a set can also show two different images to one viewer, providing a three-dimensional effect.
  • Some users of older (around pre-2000) LCD monitors complain of migraines and eyestrain problems due to flicker from fluorescent backlights fed at 50 or 60 Hz. This does not happen with most modern displays which feed backlights with high-frequency current.
  • LCD screens occasionally suffer from image persistence, which is similar to screen burn on CRT and plasma displays. This is becoming less of a problem as technology advances, with newer LCD panels using various methods to reduce the problem. Sometimes the panel can be restored to normal by displaying an all-white pattern for extended periods of time.
  • Some light guns do not work with this type of display since they do not have flexible lighting dynamics that CRTs have. However, the field emission display will be a potential replacement for LCD flat-panel displays since they emulate CRTs in some technological ways.
  • Some panels are incapable of displaying low resolution screen modes (such as 320x200). However, this is due to the circuitry that drives the LCD rather than the LCD itself.
  • Consumer LCD monitors are more fragile than their CRT counterparts, with the screen especially vulnerable. However, lighter weight makes falling less dangerous, and some displays may be protected with glass shields.

See also

LCD technologies

  • List of LCD matrices
  • TFT LCD
  • Active-matrix liquid crystal display (AMLCD)
  • Input lag

Other display technologies

  • Comparison of display technology
  • Cathode ray tube (CRT)
  • Vacuum fluorescent display (VFD)
  • Digital Light Processing (DLP)
  • Plasma display panel (PDP)
  • Light-emitting diode (LED)
  • Organic light-emitting diode (OLED)
  • Surface-conduction electron-emitter display (SED)
  • Field emission display (FED)
  • Liquid crystal on silicon (LCOS)

Display applications

  • Television and digital television
  • Liquid crystal display television (LCD TV)
  • LCD projector
  • Computer monitor

Manufacturers

  • Sharp Corporation
  • Barco
  • Corning Inc.
  • LXD Incorporated
  • International Display Works
  • CoolTouch Monitors


 

References

  1. ^ Brody, T.P., "Birth of the Active Matrix," Information Display, Vol. 13, No. 10, 1997, pp. 28-32.

External links

General information

  • How LCDs are madeAn interactive demonstration.
  • Development of Liquid Crystal Displays - George Gray, Hull University Freeview video by the Vega Science Trust.
  • History of Liquid Crystals, presentation and extracts from the book Crystals that Flow: Classic papers from the history of liquid crystals by its co-author Timothy J. Sluckin
  • Display Technology, by Geoff Walker in the September 2001 issue of Pen Computing
  • CRT vs. LCD Monitors Concise comparison matrix by Sam C. Chan for the network integrator Bravo Technology Center
  • LCD, Plasma TV's Deemed Reliable: Report The International Business Times
  • Overview of 3LCD display technology
  • HDTV Org Independent guide to High Definition / LCD TV
  • LCD-TFT Desktop Displays, specs and information about LCD display technology and models

Institutional

  • Liquid Crystal Institute of the Kent State University

Manufacturers

  • LXD Incorporated, harsh environements dispays manufacturing
  • Displaze Ltd., Flat Panel reseller with specifications for many brands
  • G-NET Inc., LCD Displays For Vehicle Applications From 7" to 12" Sizes.
  • Hannstar Display Corp. LCD panel manufacturer for computers and televisions.
  • 3M Company. Manufacturer of brightness enhancement films for LCD displays.

Usage of LCDs

  • LCD (Liquid Crystal Display) IO, source code and examples for driving small LCD displays by techref.massmind.org, updated: 2006/4/10
  • PIC Microcontroler LCD IO routines, source code and examples for driving LCD displays with the Microchip PIC embedded controllers, by techref.massmind.org, updated: 2006/3/5
Retrieved from "http://en.wikipedia.org/wiki/Liquid_crystal_display"