WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Atomic force microscope
  2. Atomic nanoscope
  3. Atom probe
  4. Ballistic conduction
  5. Bingel reaction
  6. Biomimetic
  7. Bio-nano generator
  8. Bionanotechnology
  9. Break junction
  10. Brownian motor
  11. Bulk micromachining
  12. Cantilever
  13. Carbon nanotube
  14. Carbyne
  15. CeNTech
  16. Chemical Compound Microarray
  17. Cluster
  18. Colloid
  19. Comb drive
  20. Computronium
  21. Coulomb blockade
  22. Diamondoids
  23. Dielectrophoresis
  24. Dip Pen Nanolithography
  25. DNA machine
  26. Ecophagy
  27. Electrochemical scanning tunneling microscope
  28. Electron beam lithography
  29. Electrospinning
  30. Engines of Creation
  31. Exponential assembly
  32. Femtotechnology
  33. Fermi point
  34. Fluctuation dissipation theorem
  35. Fluorescence interference contrast microscopy
  36. Fullerene
  37. Fungimol
  38. Gas cluster ion beam
  39. Grey goo
  40. Hacking Matter
  41. History of nanotechnology
  42. Hydrogen microsensor
  43. Inorganic nanotube
  44. Ion-beam sculpting
  45. Kelvin probe force microscope
  46. Lab-on-a-chip
  47. Langmuir-Blodgett film
  48. LifeChips
  49. List of nanoengineering topics
  50. List of nanotechnology applications
  51. List of nanotechnology topics
  52. Lotus effect
  53. Magnetic force microscope
  54. Magnetic resonance force microscopy
  55. Mechanochemistry
  56. Mechanosynthesis
  57. MEMS thermal actuator
  58. Mesotechnology
  59. Micro Contact Printing
  60. Microelectromechanical systems
  61. Microfluidics
  62. Micromachinery
  63. Molecular assembler
  64. Molecular engineering
  65. Molecular logic gate
  66. Molecular manufacturing
  67. Molecular motors
  68. Molecular recognition
  69. Molecule
  70. Nano-abacus
  71. Nanoart
  72. Nanobiotechnology
  73. Nanocar
  74. Nanochemistry
  75. Nanocomputer
  76. Nanocrystal
  77. Nanocrystalline silicon
  78. Nanocrystal solar cell
  79. Nanoelectrochemistry
  80. Nanoelectrode
  81. Nanoelectromechanical systems
  82. Nanoelectronics
  83. Nano-emissive display
  84. Nanoengineering
  85. Nanoethics
  86. Nanofactory
  87. Nanoimprint lithography
  88. Nanoionics
  89. Nanolithography
  90. Nanomanufacturing
  91. Nanomaterial based catalyst
  92. Nanomedicine
  93. Nanomorph
  94. Nanomotor
  95. Nano-optics
  96. Nanoparticle
  97. Nanoparticle tracking analysis
  98. Nanophotonics
  99. Nanopore
  100. Nanoprobe
  101. Nanoring
  102. Nanorobot
  103. Nanorod
  104. Nanoscale
  105. Nano-Science Center
  106. Nanosensor
  107. Nanoshell
  108. Nanosight
  109. Nanosocialism
  110. Nanostructure
  111. Nanotechnology
  112. Nanotechnology education
  113. Nanotechnology in fiction
  114. Nanotoxicity
  115. Nanotube
  116. Nanovid microscopy
  117. Nanowire
  118. National Nanotechnology Initiative
  119. Neowater
  120. Niemeyer-Dolan technique
  121. Ormosil
  122. Photolithography
  123. Picotechnology
  124. Programmable matter
  125. Quantum dot
  126. Quantum heterostructure
  127. Quantum point contact
  128. Quantum solvent
  129. Quantum well
  130. Quantum wire
  131. Richard Feynman
  132. Royal Society's nanotech report
  133. Scanning gate microscopy
  134. Scanning probe lithography
  135. Scanning probe microscopy
  136. Scanning tunneling microscope
  137. Scanning voltage microscopy
  138. Self-assembled monolayer
  139. Self-assembly
  140. Self reconfigurable
  141. Self-Reconfiguring Modular Robotics
  142. Self-replication
  143. Smart dust
  144. Smart material
  145. Soft lithography
  146. Spent nuclear fuel
  147. Spin polarized scanning tunneling microscopy
  148. Stone Wales defect
  149. Supramolecular assembly
  150. Supramolecular chemistry
  151. Supramolecular electronics
  152. Surface micromachining
  153. Surface plasmon resonance
  154. Synthetic molecular motors
  155. Synthetic setae
  156. Tapping AFM
  157. There's Plenty of Room at the Bottom
  158. Transfersome
  159. Utility fog

 



NANOTECHNOLOGY
This article is from:
http://en.wikipedia.org/wiki/Ion-beam_sculpting

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Ion-beam sculpting

From Wikipedia, the free encyclopedia

 

Ion scultping is a term coined by Golovchenko at Harvard and co-workers. This term describes a two-step process to make nanopores. The first step is make either a through hole or a blind hole, most commonly using an focused ion beam (FIB). The holes are commonly ~100 nm, but can be made much smaller. This step may or may not be done at room temperature, with a low temperature of -120 C. Next, there are three common techniques to now 'sculpt' the hole: broad area ion exposure, TEM exposure, and FIB exposure. Holes can be closed completely, but also they can be left open at a lower limit of 1 - 10 nm.

Broad area ion exposure

This technique uses a broad area argon ion source beam. If the hole is blind (a blind hole is a hole that has not broken through on the backside yet) the wafer (often SiN or silicon oxide) is then turned upside down, and exposed with the argon beam. A detector counts the amount of ions passing through the membrane (which should be zero). The process stops when ions begin to be detected. This enables for a much smaller hole to be opened than if using an FIB alone.

Alternatively, if the hole is through, the argon beam is aimed at the wafer, and by effects not fully understood, atoms from elsewhere on the wafer move to close the hole. The process is stopped when the detector is only receiving a small current. If the current drops to zero, then the hole is closed. The idea is that the smaller the hole, the less ions get through to the detector. This is the process used by J. Li and J. Golovchenko. They published a paper in July 2006 saying they can now use all the noble gases for this process, not just argon.

TEM exposure

A through hole in a wafer can be closed down by a transmission electron microscope. Due to hydrocarbon buildup, the electrons stimulate hole closure. This method is very slow (taking over an hour to close a 100 nm hole). The slow method allows for great control of the hole size (since you can watch the hole decrease), but its drawback is that it takes a long time.

FIB exposure

This is the easiest of the techniques, but the least useful. After a hole is milled with an FIB, one can just image the hole (analagous to the TEM technique). The ions stimulate movement on the wafer, and also implant themselves to help close the hole. Unlike the other two methods, the holes closed in this technique are not very circular and smooth. The holes appear jagged under TEM photos. Also, it is much hard to control the size of the hole to the single nanometer regime. Another drawback to this technique is that while imaging the hole, the ion beam is continually sputtering membrane material away. If the beam scan area is large enough, the rate of atoms moving to close the hole will be greater than the rate of sputtering, so the hole will close. If the membrane is too thin or the scan area too small, then the rate of sputtering will win, and the hole will open up.

Retrieved from "http://en.wikipedia.org/wiki/Ion-beam_sculpting"