WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Atomic force microscope
  2. Atomic nanoscope
  3. Atom probe
  4. Ballistic conduction
  5. Bingel reaction
  6. Biomimetic
  7. Bio-nano generator
  8. Bionanotechnology
  9. Break junction
  10. Brownian motor
  11. Bulk micromachining
  12. Cantilever
  13. Carbon nanotube
  14. Carbyne
  15. CeNTech
  16. Chemical Compound Microarray
  17. Cluster
  18. Colloid
  19. Comb drive
  20. Computronium
  21. Coulomb blockade
  22. Diamondoids
  23. Dielectrophoresis
  24. Dip Pen Nanolithography
  25. DNA machine
  26. Ecophagy
  27. Electrochemical scanning tunneling microscope
  28. Electron beam lithography
  29. Electrospinning
  30. Engines of Creation
  31. Exponential assembly
  32. Femtotechnology
  33. Fermi point
  34. Fluctuation dissipation theorem
  35. Fluorescence interference contrast microscopy
  36. Fullerene
  37. Fungimol
  38. Gas cluster ion beam
  39. Grey goo
  40. Hacking Matter
  41. History of nanotechnology
  42. Hydrogen microsensor
  43. Inorganic nanotube
  44. Ion-beam sculpting
  45. Kelvin probe force microscope
  46. Lab-on-a-chip
  47. Langmuir-Blodgett film
  48. LifeChips
  49. List of nanoengineering topics
  50. List of nanotechnology applications
  51. List of nanotechnology topics
  52. Lotus effect
  53. Magnetic force microscope
  54. Magnetic resonance force microscopy
  55. Mechanochemistry
  56. Mechanosynthesis
  57. MEMS thermal actuator
  58. Mesotechnology
  59. Micro Contact Printing
  60. Microelectromechanical systems
  61. Microfluidics
  62. Micromachinery
  63. Molecular assembler
  64. Molecular engineering
  65. Molecular logic gate
  66. Molecular manufacturing
  67. Molecular motors
  68. Molecular recognition
  69. Molecule
  70. Nano-abacus
  71. Nanoart
  72. Nanobiotechnology
  73. Nanocar
  74. Nanochemistry
  75. Nanocomputer
  76. Nanocrystal
  77. Nanocrystalline silicon
  78. Nanocrystal solar cell
  79. Nanoelectrochemistry
  80. Nanoelectrode
  81. Nanoelectromechanical systems
  82. Nanoelectronics
  83. Nano-emissive display
  84. Nanoengineering
  85. Nanoethics
  86. Nanofactory
  87. Nanoimprint lithography
  88. Nanoionics
  89. Nanolithography
  90. Nanomanufacturing
  91. Nanomaterial based catalyst
  92. Nanomedicine
  93. Nanomorph
  94. Nanomotor
  95. Nano-optics
  96. Nanoparticle
  97. Nanoparticle tracking analysis
  98. Nanophotonics
  99. Nanopore
  100. Nanoprobe
  101. Nanoring
  102. Nanorobot
  103. Nanorod
  104. Nanoscale
  105. Nano-Science Center
  106. Nanosensor
  107. Nanoshell
  108. Nanosight
  109. Nanosocialism
  110. Nanostructure
  111. Nanotechnology
  112. Nanotechnology education
  113. Nanotechnology in fiction
  114. Nanotoxicity
  115. Nanotube
  116. Nanovid microscopy
  117. Nanowire
  118. National Nanotechnology Initiative
  119. Neowater
  120. Niemeyer-Dolan technique
  121. Ormosil
  122. Photolithography
  123. Picotechnology
  124. Programmable matter
  125. Quantum dot
  126. Quantum heterostructure
  127. Quantum point contact
  128. Quantum solvent
  129. Quantum well
  130. Quantum wire
  131. Richard Feynman
  132. Royal Society's nanotech report
  133. Scanning gate microscopy
  134. Scanning probe lithography
  135. Scanning probe microscopy
  136. Scanning tunneling microscope
  137. Scanning voltage microscopy
  138. Self-assembled monolayer
  139. Self-assembly
  140. Self reconfigurable
  141. Self-Reconfiguring Modular Robotics
  142. Self-replication
  143. Smart dust
  144. Smart material
  145. Soft lithography
  146. Spent nuclear fuel
  147. Spin polarized scanning tunneling microscopy
  148. Stone Wales defect
  149. Supramolecular assembly
  150. Supramolecular chemistry
  151. Supramolecular electronics
  152. Surface micromachining
  153. Surface plasmon resonance
  154. Synthetic molecular motors
  155. Synthetic setae
  156. Tapping AFM
  157. There's Plenty of Room at the Bottom
  158. Transfersome
  159. Utility fog

 



NANOTECHNOLOGY
This article is from:
http://en.wikipedia.org/wiki/Atomic_force_microscope

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Atomic force microscope

From Wikipedia, the free encyclopedia

 

The atomic force microscope (AFM) is a very high-resolution type of scanning probe microscope, with demonstrated resolution of fractions of an Angstrom, more than 1000 times better than the optical diffraction limit. The AFM was invented by Binnig, Quate and Gerber in 1986, and is one of the foremost tools for imaging, measuring and manipulating matter at the nanoscale.

Basic Principle

The AFM consists of a microscale cantilever with a sharp tip (probe) at its end that is used to scan the specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of curvature on the order of nanometers. When the tip is brought into proximity of a sample surface, forces between the tip and the sample lead to a deflection of the cantilever according to Hooke's law. Depending on the situation, forces that are measured in AFM include mechanical contact force, Van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces (see Magnetic force microscope (MFM)), Casimir forces, solvation forces etc. Typically, the deflection is measured using a laser spot reflected from the top of the cantilever into an array of photodiodes. Other methods that are used include optical interferometry, capacitive sensing or piezoresistive AFM probes. These probes are fabricated with piezoresistive elements that act as a strain gage. Using a Wheatstone bridge, strain in the AFM probe due to deflection can be measured, but this method is not as sensitive as laser deflection or interferometry.

If the tip were scanned at a constant height, there would be a risk that the tip would collide with the surface, causing damage. Hence, in most cases a feedback mechanism is employed to adjust the tip-to-sample distance to maintain a constant force between the tip and the sample. Traditionally, the sample is mounted on a piezoelectric tube, that can move the sample in the z direction for maintaining a constant force, and the x and y directions for scanning the sample. Alternately a 'tripod' configuration of three piezo crystals may be employed, with each responsible for scanning in the x,y and z directions. This eliminates some of the distortion effects seen with a tube scanner. The resulting map of the area s = f(x,y) represents the topography of the sample.

The AFM can be operated in a number of modes, depending on the application. In general, possible imaging modes are divided into static (also called Contact) modes and a variety of dynamic modes.

Imaging Modes

The primary modes of operation are static (contact) mode and dynamic mode. In the static mode operation, the static tip deflection is used as a feedback signal. Because the measurement of a static signal is prone to noise and drift, low stiffness cantilevers are used to boost the deflection signal. However, close to the surface of the sample, attractive forces can be quite strong, causing the tip to 'snap-in' to the surface. Thus static mode AFM is almost always done in contact where the overall force is repulsive. Consequently, this technique is typically called 'contact mode'. In contact mode, the force between the tip and the surface is kept constant during scanning by maintaining a constant deflection.

In the dynamic mode, the cantilever is externally oscillated at or close to its resonance frequency. The oscillation amplitude, phase and resonance frequency are modified by tip-sample interaction forces; these changes in oscillation with respect to the external reference oscillation provide information about the sample's characteristics. Schemes for dynamic mode operation include frequency modulation and the more common amplitude modulation. In frequency modulation, changes in the oscillation frequency provide information about tip-sample interactions. Frequency can be measured with very high sensitivity and thus the frequency modulation mode allows for the use of very stiff cantilevers. Stiff cantilevers provide stability very close to the surface and, as a result, this technique was the first AFM technique to provide true atomic resolution in ultra-high vacuum conditions (Giessibl).

In amplitude modulation, changes in the oscillation amplitude or phase provide the feedback signal for imaging. In amplitude modulation, changes in the phase of oscillation can be used to discriminate between different types of materials on the surface. Amplitude modulation can be operated either in the non-contact or in the intermittent contact regime. In ambient conditions, most samples develop a liquid meniscus layer. Because of this, keeping the probe tip close enough to the sample for short-range forces to become detectable while preventing the tip from sticking to the surface presents a major hurdle for the non-contact dynamic mode in ambient conditions. Dynamic contact mode (also called intermittent contact or tapping mode) was developed to bypass this problem (Zhong et al). In dynamic contact mode, the cantilever is oscillated such that it comes in contact with the sample with each cycle, and then enough restoring force is provided by the cantilever spring to detach the tip from the sample.

Amplitude modulation has also been used in the non-contact regime to image with atomic resolution by using very stiff cantilevers and small amplitudes in an ultra-high vacuum environment.

Force-Distance measurements

Another major application of AFM (besides imaging) is the measurement of force-distance curves. Here, the AFM tip is approached towards and retracted from the surface and the static deflection of the cantilever is monitored as a function of piezo displacement. These measurements have been used to measure nanoscale contacts, atomic bonding, van-der-Waals and Casimir forces, hydration/ solvation forces in liquids and single molecule stretching and rupture forces (Hinterdorfer & Dufrêne). Forces of the order of a few pico-Newton can now be routinely measured with a vertical distance resolution of better than 0.1 nanometer.

Problems with the technique include no direct measurement of the tip-sample separation and the common need for low stiffness cantilevers which tend to 'snap' to the surface. The snap-in can be reduced by measuring in liquids or by using stiffer cantilevers, but in the latter case a more sensitive deflection sensor is needed. By applying a small dither to the tip, the stiffness (force gradient) of the bond can be measured as well (Hoffmann et al.).

Advantages and Disadvantages

The AFM has several advantages over the scanning electron microscope (SEM). Unlike the electron microscope which provides a two-dimensional projection or a two-dimensional image of a sample, the AFM provides a true three-dimensional surface profile. Additionally, samples viewed by AFM do not require any special treatments (such as metal/carbon coatings) that would irreversibly change or damage the sample. While an electron microscope needs an expensive vacuum environment for proper operation, most AFM modes can work perfectly well in ambient air or even a liquid environment. This makes it possible to study biological macromolecules and even living organisms. In principle, AFM can provide higher resolution than SEM. It has been shown to give true atomic resolution in ultra-high vacuum (UHV). UHV AFM is comparable in resolution to Scanning Tunneling Microscopy and Transmission Electron Microscopy.

A disadvantage of AFM compared with the scanning electron microscope (SEM) is the image size. The SEM can image an area on the order of millimetres by millimetres with a depth of field on the order of millimetres. The AFM can only image a maximum height on the order of micrometres and a maximum scanning area of around 150 by 150 micrometres. Another inconvenience is that at high resolution, the quality of an image is limited by the radius of curvature of the probe tip, and an incorrect choice of tip for the required resolution can lead to image artifacts. Traditionally the AFM could not scan images as fast as an SEM, requiring several minutes for a typical scan, while an SEM is capable of scanning at near real-time (although at relatively low quality) after the chamber is evacuated. The relatively slow rate of scanning during AFM imaging often leads to thermal drift in the image, making the AFM microscope less suited for measuring accurate distances between artifacts on the image. However, speed advances are being made in what is being termed videoAFM, where reasonable quality images are being obtained at video rate - faster than the average SEM.

AFM images can be affected by hysteresis of the piezoelectric material and cross-talk between the (x,y,z) axes that may require software enhancement and filtering. Such filtering could "flatten" out real topographical features. However, newer AFM use real-time correction software or closed-loop scanners which practically eliminate these problems. Some AFM also use separated orthogonal scanners (as opposed to a single tube) which also serve to eliminate cross-talk problems.

See also

Wikibooks
Wikibooks has more about this subject:
The Opensource Handbook of Nanoscience and Nanotechnology
  • scanning tunneling microscope
  • scanning probe microscopy
  • scanning voltage microscopy
  • Category:Nanotechnology
  • Category:Microscopes

Software

  • Gwyddion (image data analysis program)

References

  • Q. Zhong, D. Innis, K. Kjoller, V. B. Elings, Surf. Sci. Lett. 290, L688 (1993).
  • V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists. (Book) (December 1999) Imperial College Press.
  • J. W. Cross SPM - Scanning Probe Microscopy Website
  • P. Hinterdorfer, Y. F. Dufrêne, Nature Methods, 3, 5 (2006)

  • F. Giessibl, Advances in Atomic Force Microscopy, Reviews of Modern Physics 75 (3), 949-983 (2003).
  • R. H. Eibl, V.T. Moy, Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol Biol. 305:439-50 (2005)
  • P. M. Hoffmann, A. Oral, R. A. Grimble, H. Ö. Özer, S. Jeffery, J. B. Pethica, Proc. Royal Soc. A 457, 1161 (2001).
  • Benoit M, Gabriel D, Gerisch G, Gaub HE. Nat Cell Biol. 313 (2000).
Retrieved from "http://en.wikipedia.org/wiki/Atomic_force_microscope"