New Page 1

LA GRAMMATICA DI ENGLISH GRATIS IN VERSIONE MOBILE   INFORMATIVA PRIVACY

  NUOVA SEZIONE ELINGUE

 

Selettore risorse   

   

 

                                         IL Metodo  |  Grammatica  |  RISPOSTE GRAMMATICALI  |  Multiblog  |  INSEGNARE AGLI ADULTI  |  INSEGNARE AI BAMBINI  |  AudioBooks  |  RISORSE SFiziosE  |  Articoli  |  Tips  | testi pAralleli  |  VIDEO SOTTOTITOLATI
                                                                                         ESERCIZI :   Serie 1 - 2 - 3  - 4 - 5  SERVIZI:   Pronunciatore di inglese - Dizionario - Convertitore IPA/UK - IPA/US - Convertitore di valute in lire ed euro                                              

 

 

WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Acute abdomen
  2. Acute coronary syndrome
  3. Acute pancreatitis
  4. Acute renal failure
  5. Agonal respiration
  6. Air embolism
  7. Ambulance
  8. Amnesic shellfish poisoning
  9. Anaphylaxis
  10. Angioedema
  11. Aortic dissection
  12. Appendicitis
  13. Artificial respiration
  14. Asphyxia
  15. Asystole
  16. Autonomic dysreflexia
  17. Bacterial meningitis
  18. Barotrauma
  19. Blast injury
  20. Bleeding
  21. Bowel obstruction
  22. Burn
  23. Carbon monoxide poisoning
  24. Cardiac arrest
  25. Cardiac arrhythmia
  26. Cardiac tamponade
  27. Cardiogenic shock
  28. Cardiopulmonary arrest
  29. Cardiopulmonary resuscitation
  30. Catamenial pneumothorax
  31. Cerebral hemorrhage
  32. Chemical burn
  33. Choking
  34. Chronic pancreatitis
  35. Cincinnati Stroke Scale
  36. Clinical depression
  37. Cord prolapse
  38. Decompression sickness
  39. Dental emergency
  40. Diabetic coma
  41. Diabetic ketoacidosis
  42. Distributive shock
  43. Drowning
  44. Drug overdose
  45. Eclampsia
  46. Ectopic pregnancy
  47. Electric shock
  48. Emergency medical services
  49. Emergency medical technician
  50. Emergency medicine
  51. Emergency room
  52. Emergency telephone number
  53. Epiglottitis
  54. Epilepsia partialis continua
  55. Frostbite
  56. Gastrointestinal perforation
  57. Gynecologic hemorrhage
  58. Heat syncope
  59. HELLP syndrome
  60. Hereditary pancreatitis
  61. Hospital
  62. Hydrocephalus
  63. Hypercapnia
  64. Hyperemesis gravidarum
  65. Hyperkalemia
  66. Hypertensive emergency
  67. Hyperthermia
  68. Hypoglycemia
  69. Hypothermia
  70. Hypovolemia
  71. Internal bleeding
  72. Ketoacidosis
  73. Lactic acidosis
  74. Lethal dose
  75. List of medical emergencies
  76. Malaria
  77. Malignant hypertension
  78. Medical emergency
  79. Meningitis
  80. Neuroglycopenia
  81. Neuroleptic malignant syndrome
  82. Nonketotic hyperosmolar coma
  83. Obstetrical hemorrhage
  84. Outdoor Emergency Care
  85. Overwhelming post-splenectomy infection
  86. Paralytic shellfish poisoning
  87. Paramedic
  88. Paraphimosis
  89. Peritonitis
  90. Physical trauma
  91. Placenta accreta
  92. Pneumothorax
  93. Positional asphyxia
  94. Pre-eclampsia
  95. Priapism
  96. Psychotic depression
  97. Respiratory arrest
  98. Respiratory failure
  99. Retinal detachment
  100. Revised Trauma Score
  101. Sepsis
  102. Septic arthritis
  103. Septic shock
  104. Sexual assault
  105. Shock
  106. Simple triage and rapid treatment
  107. Soy allergy
  108. Spinal cord compression
  109. Status epilepticus
  110. Stroke
  111. Temporal arteritis
  112. Testicular torsion
  113. Toxic epidermal necrolysis
  114. Toxidrome
  115. Triage
  116. Triage tag
  117. Upper gastrointestinal bleeding
  118. Uterine rupture
  119. Ventricular fibrillation
  120. Walking wounded
  121. Watershed stroke
  122. Wilderness first aid
  123. Wound

 

 
CONDIZIONI DI USO DI QUESTO SITO
L'utente può utilizzare il nostro sito solo se comprende e accetta quanto segue:

  • Le risorse linguistiche gratuite presentate in questo sito si possono utilizzare esclusivamente per uso personale e non commerciale con tassativa esclusione di ogni condivisione comunque effettuata. Tutti i diritti sono riservati. La riproduzione anche parziale è vietata senza autorizzazione scritta.
  • Il nome del sito EnglishGratis è esclusivamente un marchio e un nome di dominio internet che fa riferimento alla disponibilità sul sito di un numero molto elevato di risorse gratuite e non implica dunque alcuna promessa di gratuità relativamente a prodotti e servizi nostri o di terze parti pubblicizzati a mezzo banner e link, o contrassegnati chiaramente come prodotti a pagamento (anche ma non solo con la menzione "Annuncio pubblicitario"), o comunque menzionati nelle pagine del sito ma non disponibili sulle pagine pubbliche, non protette da password, del sito stesso.
  • La pubblicità di terze parti è in questo momento affidata al servizio Google AdSense che sceglie secondo automatismi di carattere algoritmico gli annunci di terze parti che compariranno sul nostro sito e sui quali non abbiamo alcun modo di influire. Non siamo quindi responsabili del contenuto di questi annunci e delle eventuali affermazioni o promesse che in essi vengono fatte!
  • L'utente, inoltre, accetta di tenerci indenni da qualsiasi tipo di responsabilità per l'uso - ed eventuali conseguenze di esso - degli esercizi e delle informazioni linguistiche e grammaticali contenute sul siti. Le risposte grammaticali sono infatti improntate ad un criterio di praticità e pragmaticità più che ad una completezza ed esaustività che finirebbe per frastornare, per l'eccesso di informazione fornita, il nostro utente. La segnalazione di eventuali errori è gradita e darà luogo ad una immediata rettifica.

     

    ENGLISHGRATIS.COM è un sito personale di
    Roberto Casiraghi e Crystal Jones
    email: robertocasiraghi at iol punto it

    Roberto Casiraghi           
    INFORMATIVA SULLA PRIVACY              Crystal Jones


    Siti amici:  Lonweb Daisy Stories English4Life Scuolitalia
    Sito segnalato da INGLESE.IT

 
 



THE BOOK OF MEDICAL EMERGENCIES
This article is from:
http://en.wikipedia.org/wiki/Electric_shock

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Electric shock

From Wikipedia, the free encyclopedia

 
Sign warning of possible electric shock hazard
Sign warning of possible electric shock hazard

An electric shock can occur upon contact of a human or animal body with any source of voltage high enough to cause sufficient current flow through the muscles or nerves. The minimum detectable current in humans is thought to be about 1 milliampere (mA). The current may cause tissue damage or heart fibrillation if it is sufficiently high. A fatal electric shock is referred to as electrocution.

Shock effects

Psychological

The perception of electric shock can be different depending on the voltage, duration, current, path taken, frequency, etc. Current entering the hand has a threshold of perception of about 5 to 10 mA (milliampere) for DC and about 1 to 10 mA for AC at 60 Hz. Shock perception declines with increasing frequency, ultimately disappearing at frequencies above 15-20 kHz.

Physiological

Burns - Tissue heating due to resistance can cause extensive and deep burns. High-voltage (> 500 to 1000 V) shocks tend to cause internal burns due to the large energy (which is proportional to the square of the voltage) available from the source. Damage due to current is through tissue heating.

Ventricular fibrillation - A low-voltage (110 to 220 V), 50 or 60-Hz AC current travelling through the chest for a fraction of a second may induce ventricular fibrillation at currents as low as 60mA. With DC, 300 to 500 mA is required. If the current has a direct pathway to the heart (e.g., via a cardiac catheter or other electrodes), a much lower current of less than 1 mA, (AC or DC) can cause fibrillation. Fibrillations are usually lethal because all the heart muscle cells move independently. Above 200mA, muscle contractions are so strong that the heart muscles cannot move at all.

Neurological effects - Current can cause interference with nervous control, especially over the heart and lungs.

When the current path is through the head, it appears that, with sufficient current, loss of consciousness almost always occurs swiftly. (This is borne out by some limited self-experimentation by early designers of the electric chair and by research from the field of animal husbandry, where electric stunning has been extensively studied) [1].

Arc-flash hazards - Over 80% of all injuries and fatalities caused by electrical incidents are not caused by electric shock, but by the intense heat, light, and pressure wave (blast) caused by electrical faults. The arc-flash in an electrical fault produces the same type of light radiation from which electric welders protect themselves using face shields with dark glass, heavy leather gloves, and full-coverage clothing. The heat produced may cause severe burns, especially on unprotected flesh. The blast produced by vaporizing metallic components can break bones and irreparably damage internal organs. The degree of hazard present at a particular location can be determined by a detailed analysis of the electrical system, and appropriate protection worn if the electrical work must be performed with the electricity on. Worker safety standards in the USA require, though, that the electricity be turned off before work is performed unless a greater hazard will result from turning the power off.

Issues affecting lethality

Other issues affecting lethality are frequency, which is an issue in causing cardiac arrest or muscular spasms, and pathway - if the current passes through the chest or head there is an increased chance of death. From a mains circuit the damage is more likely to be internal, leading to cardiac arrest.

The comparison between the dangers of alternating current and direct current has been a subject of debate ever since the War of Currents in the 1880s. DC tends to cause continuous muscular contractions that make the victim hold on to a live conductor, thereby increasing the risk of deep tissue burns. On the other hand, mains-frequency AC tends to interfere more with the heart's electrical pacemaker, leading to an increased risk of fibrillation. AC at higher frequencies holds a different mixture of hazards, such as RF burns and the possibility of tissue damage with no immediate sensation of pain. Generally, higher frequency AC current tends to run along the skin rather than penetrating and touching vital organs such as the heart. While there will be severe burn damage at higher voltages, it is normally not fatal.

It is sometimes suggested that human lethality is most common with alternating current at 100-250 volts, however death has occurred from supplies as low as 32 volts and supplies at over 250 volts frequently cause fatalities.

Electrical discharge from lightning tends to travel over the surface of the body causing burns and may cause respiratory arrest.

Point of Entry

  • Macroshock: Current flowing across intact skin and through the body. Current traveling from arm to arm, or between an arm and a foot, is likely to traverse the heart, and so is much more dangerous than current traveling between a leg and the ground.
  • Microshock: Direct current path to the heart tissue

Avoiding danger of shock

It is strongly recommended that people should not work on exposed live conductors if at all possible. If this is not possible then insulated gloves and tools should be used. If both hands make contact with surfaces or objects at different voltages, current can flow through the body from one hand to the other. This can lead the current to pass through the heart. Similarly, if the current passes from one hand to the feet, significant current will probably pass through the heart.

Also, remember there can be a voltage potential between neutral wires and ground in the event of an improperly wired (disconnected) neutral, or if it is part of certain obsolete (and now illegal) switch circuits. The electrical appliance or lighting may provide some voltage drop, but not nearly enough to avoid a shock. "Live" neutral wires should be treated with the same respect as hot wires. Also, the neutral wire must be insulated to the same degree as the hot wire to avoid a short circuit.

Electrical codes in many parts of the world call for installing a residual-current device (RCD or GFCI, ground fault circuit interrupter) on electrical circuits thought to pose a particular hazard to reduce the risk of electrocution. In the USA, for example, a new or remodeled residential dwelling must have them installed in all kitchens, bathrooms, laundry rooms, garages, and any other room with a concrete floor such as a workshop. These devices work by detecting an imbalance between the live and neutral wires. In other words, if more current is passing though the live wire than is returning though its neutral wire, it assumes something is wrong and breaks the circuit in a fraction of a second. There is some concern that it might not be fast enough for infants and small children in rare instances.

The plumbing system in a home or other building has traditionally used metal pipes and thus been connected to ground through the pipes. This is no longer always true because of the extensive use of plastic PVC piping in recent years, but a plastic system cannot be relied upon for safety purposes. Contrary to popular belief, pure water is not a good conductor of electricity. However, most water is not pure and contains enough dissolved particles (salts) to greatly enhance its conductivity. When the human skin becomes wet, it allows much more current to flow than the dry human body would. Thus, being in the bath or shower will not only ground oneself to return path of the power mains, but lower the body's resistance as well. Under these circumstances, touching any metal switch or appliance that is connected to the power mains could result in electrocution. While such an appliance is not supposed to be hot on its outer metal switch or frame, it may have become so if a hot bare wire is accidentally touching it (either directly or indirectly via internal metal parts). It is for this reason that mains electrical sockets are prohibited in bathrooms in the UK. However, widespread use of plastic cases (which won't conduct electricity), grounding of appliances, and mandatory installation of ground fault circuit interrupters have greatly reduced this type of electrocution over the past few decades.

A properly grounded appliance eliminates the electric shock potential by causing a short circuit if any portion of the metal frame (chassis) is accidentally touching the hot wire. This will cause the circuit breaker to turn off or the fuse to blow resulting in a power outage in that area of the home or building. Often there will be a large "bang" and possibly smoke which could easily scare anyone nearby. However, this still much safer than risking electric shock as the chance of an out-of-control fire is remote. Many people in this situation have nevertheless called the fire department as a precaution.

Where live circuits must be frequently worked on (e.g. television repair), an isolation transformer is used. Unlike ordinary transformers which raise or lower voltage, the coil windings of an isolation transformer are at a 1:1 ratio which keeps the voltage unchanged. The purpose is to isolate the neutral wire so that it has no connection to ground. Thus, if a technician accidentally touched the hot chassis and ground at the same time, nothing would happen.

Neither ground fault circuit interrupters (RCD/GFCI) nor isolation transformers can prevent electrocution between the hot and neutral wires. This is the same path used by functional electrical appliances, so protection is not possible. However, most accidental electrocutions, especially those not involving electrical work and repair, are via ground -- not the neutral wire.

First Aid

In helping a victim of an electric shock, the first thing you must do is disconnect the power supply, but only if it is safe to do so. Touching the power source may put you in danger yourself, especially if the line is not insulated properly. If the victim is in contact with something portable such as a hair dryer, attempt to move it away using an non-conductive object such as a broom. Don’t even touch the victim until you are sure the power supply is turned off. Be especially careful in wet areas, such as bathrooms, since the salts in water conduct electricity and electrocuting yourself is also possible.

First aid instructions

  1. Check if you are alone. If there are other people around, instruct them to ring an ambulance right away.
  2. Check for a response and breathing. If the area is safe for you to be in, and you have removed the object or have cut off its power supply, yell to the person to see if they are conscious. At this stage, do not touch the victim. Check once again to see if the area is safe. If you are satisfied that it is safe, start resuscitating the victim. If you have no first aid knowledge, skip to the next step if someone has not already done it for you.
  3. Call emergency services for an ambulance. If you are unsure on resuscitation techniques, the ambulance call-taker will give you easy-to-follow instructions over the telephone, so you can increase the patient’s chances of survival until the ambulance arrives.
  4. If the breathing and pulse are steady, attend to injuries. Cool the burns and cover with dressings that won’t stick. Never put ointments or oils onto burns. If the victim has fallen from a height, only move them if there is chance of further danger (such as falling objects). Try not to move them unnecessarily in case of spinal injuries or causing them excess pain, unless you are satisfied that moving them is necessary to prevent further dangers.
  5. Talk calmly and reassuringly to the conscious victim until the ambulance arrives.

Handling downed power lines

Sometimes, power lines are downed in car accidents, causing energized lines to drape over the vehicles. The metal structure of the car surrounds the occupants, behaving as a Faraday cage which protects them from electrical shock. Unless there is an immediate fire danger, urge the victims to remain inside the car. Do not approach the scene until it has been declared safe by the proper authorities and you have their permission to approach. Stand well back and try to encourage any other bystanders to keep a distance of at least six metres. If occupants must exit the vehicle (say, because of fire), they should flee individually by jumping well clear of the energized car and wires. It is essential that no simultaneous contact be made with the car, wires, or ground since this may result in immediate electrocution.

Electrocution statistics

There were 550 electrocutions in the US in 1993, which translates to 2.1 deaths per million inhabitants. At that time, the incidence of electrocutions was decreasing. [1]

Deliberate uses

Electric shock as medical treatment

Electric shock can also be used as a medical therapy, under carefully engineered conditions:

  • in a psychiatric therapy for mental illness, called in modern usage Electroconvulsive therapy or ECT; previously referred to as electroshock therapy or EST. The objective of the therapy is the seizure induced, not the shock or the physical convulsions. There is no sensation of shock because the patient is anesthetized. The therapy was originally conceived of after it was observed that depressed patients who also suffered from epilepsy experienced some remission after a spontaneous seizure. The first attempts at deliberately inducing seizure as therapy used not electricity but chemicals; however electricity provided finer control for delivering the minimum stimulus needed. Ideally some other method of inducing seizure would be used, as the electricity may be associated with some of the negative side effects of ECT including amnesia. In the 1950's and 1960's, Evergreen International, an organization promoting Mormon ideology, attempted to use electroshock therapy as a way to reverse homosexuality[2], but has since discontinued the practice.
  • as a treatment for fibrillation or irregular heart rhythms: see defibrillator and cardioversion.
  • as a method of pain relief: see Transcutaneous Electrical Nerve Stimulator (more commonly referred to as a TENS unit).

Torture

Main article: torture

Electric shocks have been used as a method of torture, since the received voltage and amperage can be controlled with precision and used to cause pain while avoiding obvious evidence on the victim's body. Such torture usually uses electrodes attached to parts of the victim's body. The genitalia are amongst the most painful, and at the same time humiliating. Nipples and the tongue are also frequent sites. Another frequent method of electrical torture is stunning with an electroshock gun such as a cattle prod or a taser, (provided a sufficiently high voltage and non-lethal current is used in the former case).

The Nazis are known to have used electrical torture during World War II. An extensive fictional depiction of such torture is included in the 1966 book The Secret of Santa Vittoria by Robert Crichton. During the Vietnam War, electric shock torture is said to have been used against American prisoners of war. A scene of electrical torture in the American Deep South is included in the 1980 Robert Redford film Brubaker. An example in popular modern culture is the electric torture of Riggs in Lethal Weapon.

A few advocates for the mentally ill and anti-psychiatry movement such as Thomas Szasz have asserted that electroconvulsive therapy is torture used without bona fide medical benefit against recalcitrant or non-reponsive patients; but for more on ECT as medical therapy, see above.


 

Capital punishment

Main article: Electric chair

Electric shock delivered by an electric chair is sometimes used as a means of capital punishment, although its use has become rare in recent times. Although the chair was at one time considered a more humane and modern execution method than hanging, shooting, or decapitation, it is now being replaced for the same reasons by lethal injection.

In addition, modern reportage has revealed that it sometimes takes several shocks to be effective, and that the condemned person may actually catch fire before the process is complete. Throughout the world, execution via electric shock has always been regarded as inhumane. Except for the United States, only the Philippines used this method for a few years. It remains a legal means of execution in some states of the USA.[3] It is reportedly one of the most grisly forms of modern execution to witness, with smoke or actual flame visible, coming from the prisoner's garments or cap.

Games

Electric shock is sometimes used as a punishment in novelty games such as Lightning Reaction, Shocking Roulette, Shocking Liar, Laser Shock Guns, and Shocking Tanks. In addition to these games, there are some prank toys like a fake pen or a chocolate candy which give out a mild shock.

Notes

  1. ^ Folliot, Dominigue (1998). Electricity: Physiological Effects (English). Encyclopaedia of Occupational Health and Safety, Fourth Edition. Retrieved on 2006-09-04.
  2. ^ Evergreen International, Is Sexual Re-orientation Possible?, Thockmorton
  3. ^ http://www.deathpenaltyinfo.org/state/

See also

  • Static electricity
  • Electromagnetism
  • Transcutaneous Electrical Nerve Stimulator

External links

  • National Institute for Occupation Safety & Health: Worker Deaths by Electrocution a CDC study.
  • Physiological effects of electricity
  • Shock current path
  • Electrical injury (Merck Manual)
  • Electric Shock Hazards (Hyperphysics)
  • Question: Why Does Mixing Water and Electricity Cause Electric Shock?
  • Electric Shock - a more technical perspective
  • Construction Safety Association if Ontario: Electrocution ... article with case studies
  • Protection against electric shocks - Physiological effects and protection rules
Retrieved from "http://en.wikipedia.org/wiki/Electric_shock"