WIKIBOOKS
DISPONIBILI
?????????

ART
- Great Painters
BUSINESS&LAW
- Accounting
- Fundamentals of Law
- Marketing
- Shorthand
CARS
- Concept Cars
GAMES&SPORT
- Videogames
- The World of Sports

COMPUTER TECHNOLOGY
- Blogs
- Free Software
- Google
- My Computer

- PHP Language and Applications
- Wikipedia
- Windows Vista

EDUCATION
- Education
LITERATURE
- Masterpieces of English Literature
LINGUISTICS
- American English

- English Dictionaries
- The English Language

MEDICINE
- Medical Emergencies
- The Theory of Memory
MUSIC&DANCE
- The Beatles
- Dances
- Microphones
- Musical Notation
- Music Instruments
SCIENCE
- Batteries
- Nanotechnology
LIFESTYLE
- Cosmetics
- Diets
- Vegetarianism and Veganism
TRADITIONS
- Christmas Traditions
NATURE
- Animals

- Fruits And Vegetables



ARTICLES IN THE BOOK

  1. Adobe Reader
  2. Adware
  3. Altavista
  4. AOL
  5. Apple Macintosh
  6. Application software
  7. Arrow key
  8. Artificial Intelligence
  9. ASCII
  10. Assembly language
  11. Automatic translation
  12. Avatar
  13. Babylon
  14. Bandwidth
  15. Bit
  16. BitTorrent
  17. Black hat
  18. Blog
  19. Bluetooth
  20. Bulletin board system
  21. Byte
  22. Cache memory
  23. Celeron
  24. Central processing unit
  25. Chat room
  26. Client
  27. Command line interface
  28. Compiler
  29. Computer
  30. Computer bus
  31. Computer card
  32. Computer display
  33. Computer file
  34. Computer games
  35. Computer graphics
  36. Computer hardware
  37. Computer keyboard
  38. Computer networking
  39. Computer printer
  40. Computer program
  41. Computer programmer
  42. Computer science
  43. Computer security
  44. Computer software
  45. Computer storage
  46. Computer system
  47. Computer terminal
  48. Computer virus
  49. Computing
  50. Conference call
  51. Context menu
  52. Creative commons
  53. Creative Commons License
  54. Creative Technology
  55. Cursor
  56. Data
  57. Database
  58. Data storage device
  59. Debuggers
  60. Demo
  61. Desktop computer
  62. Digital divide
  63. Discussion groups
  64. DNS server
  65. Domain name
  66. DOS
  67. Download
  68. Download manager
  69. DVD-ROM
  70. DVD-RW
  71. E-mail
  72. E-mail spam
  73. File Transfer Protocol
  74. Firewall
  75. Firmware
  76. Flash memory
  77. Floppy disk drive
  78. GNU
  79. GNU General Public License
  80. GNU Project
  81. Google
  82. Google AdWords
  83. Google bomb
  84. Graphics
  85. Graphics card
  86. Hacker
  87. Hacker culture
  88. Hard disk
  89. High-level programming language
  90. Home computer
  91. HTML
  92. Hyperlink
  93. IBM
  94. Image processing
  95. Image scanner
  96. Instant messaging
  97. Instruction
  98. Intel
  99. Intel Core 2
  100. Interface
  101. Internet
  102. Internet bot
  103. Internet Explorer
  104. Internet protocols
  105. Internet service provider
  106. Interoperability
  107. IP addresses
  108. IPod
  109. Joystick
  110. JPEG
  111. Keyword
  112. Laptop computer
  113. Linux
  114. Linux kernel
  115. Liquid crystal display
  116. List of file formats
  117. List of Google products
  118. Local area network
  119. Logitech
  120. Machine language
  121. Mac OS X
  122. Macromedia Flash
  123. Mainframe computer
  124. Malware
  125. Media center
  126. Media player
  127. Megabyte
  128. Microsoft
  129. Microsoft Windows
  130. Microsoft Word
  131. Mirror site
  132. Modem
  133. Motherboard
  134. Mouse
  135. Mouse pad
  136. Mozilla Firefox
  137. Mp3
  138. MPEG
  139. MPEG-4
  140. Multimedia
  141. Musical Instrument Digital Interface
  142. Netscape
  143. Network card
  144. News ticker
  145. Office suite
  146. Online auction
  147. Online chat
  148. Open Directory Project
  149. Open source
  150. Open source software
  151. Opera
  152. Operating system
  153. Optical character recognition
  154. Optical disc
  155. output
  156. PageRank
  157. Password
  158. Pay-per-click
  159. PC speaker
  160. Peer-to-peer
  161. Pentium
  162. Peripheral
  163. Personal computer
  164. Personal digital assistant
  165. Phishing
  166. Pirated software
  167. Podcasting
  168. Pointing device
  169. POP3
  170. Programming language
  171. QuickTime
  172. Random access memory
  173. Routers
  174. Safari
  175. Scalability
  176. Scrollbar
  177. Scrolling
  178. Scroll wheel
  179. Search engine
  180. Security cracking
  181. Server
  182. Simple Mail Transfer Protocol
  183. Skype
  184. Social software
  185. Software bug
  186. Software cracker
  187. Software library
  188. Software utility
  189. Solaris Operating Environment
  190. Sound Blaster
  191. Soundcard
  192. Spam
  193. Spamdexing
  194. Spam in blogs
  195. Speech recognition
  196. Spoofing attack
  197. Spreadsheet
  198. Spyware
  199. Streaming media
  200. Supercomputer
  201. Tablet computer
  202. Telecommunications
  203. Text messaging
  204. Trackball
  205. Trojan horse
  206. TV card
  207. Unicode
  208. Uniform Resource Identifier
  209. Unix
  210. URL redirection
  211. USB flash drive
  212. USB port
  213. User interface
  214. Vlog
  215. Voice over IP
  216. Warez
  217. Wearable computer
  218. Web application
  219. Web banner
  220. Web browser
  221. Web crawler
  222. Web directories
  223. Web indexing
  224. Webmail
  225. Web page
  226. Website
  227. Wiki
  228. Wikipedia
  229. WIMP
  230. Windows CE
  231. Windows key
  232. Windows Media Player
  233. Windows Vista
  234. Word processor
  235. World Wide Web
  236. Worm
  237. XML
  238. X Window System
  239. Yahoo
  240. Zombie computer
 



MY COMPUTER
This article is from:
http://en.wikipedia.org/wiki/Soundcard

All text is available under the terms of the GNU Free Documentation License: http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License 

Sound card

From Wikipedia, the free encyclopedia

(Redirected from Soundcard)

A sound card is a computer expansion card that can input and output sound under control of computer programs. Typical uses of sound cards include providing the audio component for multimedia applications such as music composition, editing video or audio, presentation/education, and entertainment (games). Many computers have sound capabilities built in, while others require these expansion cards if audio capability is desired.

General characteristics

Close-up of a sound card PCB, showing electrolytic capacitors (most likely for AC coupling), SMT capacitors and resistors, and a YAC512 two-channel 16-bit DAC.
Close-up of a sound card PCB, showing electrolytic capacitors (most likely for AC coupling), SMT capacitors and resistors, and a YAC512 two-channel 16-bit DAC.

A typical sound card includes a sound chip, usually featuring a digital-to-analog converter, that converts recorded or generated digital waveforms of sound into an analog format. This signal is led to a (typically 1/8-inch earphone-type) connector where an amplifier, headphones, or similar sound destination can be plugged in. More advanced designs usually include more than one sound chip to separate duties between digital sound production and synthesized sounds (usually for real-time generation of music and sound effects utilizing little data and CPU time).

Digital sound reproduction is usually achieved by multi-channel DACs, able to play multiple digital samples at different pitches and volumes, optionally applying real-time effects like filtering or distortion. Multi-channel digital sound playback can also be used for music synthesis if used with a digitized instrument bank of some sort, typically a small amount of ROM or Flash memory containing samples corresponding to the standard MIDI instruments. (A contrasting way to synthesize sound on a PC uses "audio codecs", which rely heavily on software for music synthesis, MIDI compliance and even multiple-channel emulation. This approach has become common as manufacturers seek to simplify the design and the cost of the sound card itself).

Most sound cards have a line in connector where the sound signal from a cassette tape recorder or similar sound source can be input. The sound card can digitize this signal and store it (controlled by the corresponding computer software) on the computer's hard disk for editing or further reproduction. Another typical external connector is the microphone connector, for connecting to a microphone or other input device that generates a relatively lower voltage than the line in connector. Input through a microphone jack is typically used by speech recognition software or Voice over IP applications.

Connections

Most sound cards since 1999 conform to Microsoft's PC 99 standard for color coding the external connectors as follows:

See also: Jack (connector).

Voices vs channels

Another important characteristic of any sound card is the number of distinct voices (intended as the number of sounds that can be played back simultaneously and independently) and the number of channels (intended as the number of distinct electrical audio outputs).

For example, many older sound chips had three voices, but only one audio channel (mono) where all the voices were mixed into, while the AdLib sound card had 9 voice and 1 mono channel.

For a number of years, most PC sound cards had multiple FM synthesis voices (typically 9 or 18) which were mostly used for MIDI music, but only one (mono) or two(stereo) voice(s) and channel(s) dedicated to playing back digital sound samples, and playing back more than one digital sound sample required performing a software downmix at a fixed sampling rate. Modern low-cost integrated soundcards using an audio codec like the AC'97 still work that way, although they may have more than two sound output channels (surround sound).

Today, a sound card having hardware support for more than the two standard stereo voices, is likely to referred at as "providing hardware audio acceleration".

History of sound cards for the IBM PC architecture

A sound card based on VIA Envy chip
A sound card based on VIA Envy chip
Echo Digital Audio Corporation's Indigo IO — PCMCIA card 24-bit 96 kHz stereo in/out sound card
Echo Digital Audio Corporation's Indigo IO — PCMCIA card 24-bit 96 kHz stereo in/out sound card

Sound cards for computers based on the IBM PC were uncommon until 1988, leaving the internal PC speaker as the only way early PC software could produce sound and music. The speaker was limited to square wave production, leading to the common nickname of "beeper" and the resulting sound described as "beeps and boops". Several companies, most notably Access Software, developed techniques for digital sound reproduction over the PC speaker; the resulting audio, while functional, suffered from distorted output and low volume, and usually required all other processing to halt while sounds were played. Other home computer models of the 1980s included hardware support for digital sound playback or music synthesis (or both), leaving the IBM PC at a disadvantage when it came to multimedia applications such as music composition or gaming.

It is important to note that the initial design and marketing focuses of sound cards for the IBM PC platform were not based on gaming, but rather on specific audio applications such as music composition (AdLib Personal Music System, Creative Music System, IBM Music Feature Card) or on speech synthesis (Digispeech DS201, Covox Speech Thing, Street Electronics Echo). It took the involvement of Sierra and other game companies in 1988 to switch the focus toward gaming.

Hardware manufacturers

One of the first manufacturers of sound cards for the IBM PC was AdLib, who produced a card based on the Yamaha YM3812 sound chip, aka the OPL2. The AdLib had two modes: A 9-voice mode where each voice could be fully programmed, and a lesser-used "percussion" mode that used 3 regular voices to produce 5 independent percussion-only voices for a total of 11. (The percussion mode was considered inflexible by most developers, so it was used mostly by AdLib's own composition software.)

Creative Labs also marketed a sound card at the same time called the Creative Music System. Although the C/MS had twelve voices to AdLib's nine, and was a stereo card while the AdLib was mono, the basic technology behind it was based on the Philips SAA 1099 which was essentially a square-wave generator. Sounding not unlike twelve simultaneous PC speakers, it never caught on the way the AdLib did, even after Creative marketed it a year later through Radio Shack as the Game Blaster. The Game Blaster retailed for under $100 and included the hit game title Silpheed.

Probably the most significant historical change in the history of sound cards came when Creative Labs produced the Sound Blaster card. The Sound Blaster cloned the AdLib, and also added a sound coprocessor to record and play back digital audio (presumably an Intel microcontroller, which Creative incorrectly called a "DSP" to suggest it was a digital signal processor), a game port for adding a joystick, and the ability to interface to MIDI equipment (using the game port and a special cable). With more features at nearly the same price point, and compatibility with existing AdLib titles, most first-time buyers chose the Sound Blaster. The Sound Blaster eventually outsold the AdLib and set the stage for dominating the market.

The Sound Blaster line of cards, in tandem with the first cheap CD-ROM drives and evolving video technology, ushered in a new era of multimedia computer applications that could play back CD audio, add recorded dialogue to computer games, or even reproduce motion video (albeit at much lower resolutions and quality). The widespread adoption of Sound Blaster support in multimedia and entertainment titles meant that future sound cards such as Media Vision's Pro Audio Spectrum and the Gravis Ultrasound needed to address Sound Blaster compatibility if they were to compete against it. So, nowadays Sound Blaster compatibility is the standard.

Industry adoption

When game company Sierra On-Line opted to support add-on music hardware (instead of built-in hardware such as the PC speaker and built-in sound capabilities of the IBM PCjr and Tandy 1000), the concept of what sound and music could be on the IBM PC changed dramatically. Two of the companies Sierra partnered with were Roland and Adlib, opting to produce in-game music for King's Quest 4 that supported the Roland MT-32 and Adlib Music Synthesizer. The MT-32 had superior output quality, due in part to its method of sound synthesis as well as built-in reverb. Being the most sophisticated synthesizer they supported, Sierra chose to use most of the MT-32's custom features and unconventional instrument patches to produce background sound effects (birds chirping, horses clopping, etc.) before the Sound Blaster brought playing real audio clips to the PC entertainment world. Many game companies would write for the MT-32, but support the Adlib as an alternative due to the latter's higher market base. The adoption of the MT-32 led the way for the creation of the MPU-401/Roland Sound Canvas and General MIDI standards as the most common means of playing in-game music until the mid-1990s.

Feature evolution

Most ISA bus soundcards could not record and play digitized sound simultaneously, mostly due to inferior card DSPs. Later PCI bus cards fixed these limitations and are mostly full-duplex.

For years, soundcards had only one or two channels of digital sound (most notably the Sound Blaster series and their compatibles) with the notable exception of the Gravis Ultrasound family, which had hardware support for up to 32 independent channels of digital audio. Early games and MOD-players needing more channels than the card could support had to resort to mixing multiple channels in software. Today, most good quality sound cards have hardware support for at least 16 channels of digital audio, but others, like those that utilize cheap audio codecs, still rely partially or completely on software to mix channels, through either device drivers or the operating system itself to perform a software downmix of multiple audio channels.

Sound devices other than expansion cards

Integrated sound on the PC

In 1984, the IBM PCjr debuted with a rudimentary 3-voice sound synthesis chip, the SN76489, capable of generating three square-wave tones with variable amplitude, and a pseudo white noise channel that could generate primitive percussion sounds. The Tandy 1000, initially being a clone of the PCjr, duplicated this functionality, with the Tandy TL/SL/RL line adding digital sound recording/playback capabilities.

In the late 1990s, many computer manufacturers began to replace plug-in soundcards with a "codec" (actually a combined audio AD/DA-converter) integrated into the motherboard. Many of these used Intel's AC97 specification. Others used cheap ACR slots.

As of 2005, these "codecs" usually lack the hardware for direct music synthesis or even multi-channel sound, with special drivers and software making up for these lacks, at the expense of CPU speed (for example, MIDI reproduction takes away 10-15% CPU time on an Athlon XP 1600+ CPU).

Nevertheless, some manufacturers offered (and offer, as of 2006) motherboards with integrated "real" (non-codec) soundcards usually in the form of a custom chipset providing e.g. full ISA or PCI Soundblaster compatibility, thus saving an expansion slot while providing the user with a (relatively) high quality soundcard.

Integrated sound on other platforms

Various computers which do not use the IBM PC architecture, such as Apple's Macintosh, and workstations from manufacturers like Sun have had their own motherboard integrated sound devices. In some cases these provide very advanced capabilities (for the time of manufacture), in most they are minimal systems. Some of these platforms have also had sound cards designed for their bus architectures which of course cannot be used in a standard PC.

USB sound cards

While not literally sound cards (since they don't plug into slots inside of a computer, and usually are not card-shaped (rectangular)), there are devices called USB sound cards. These attach to a computer via USB cables. The USB specification defines a standard interface, the USB audio device class, allowing a single driver to work with the various USB sound devices on the market.

Other outboard sound devices

USB Sound Cards are far from the first external devices allowing a computer to record or synthesize sound. Virtually any method that was once common for getting an electrical signal in or out of a computer has probably been used to attempt to produce sound.

Driver architecture

To use a sound card, the operating system typically requires a specific device driver. Some operating systems include the drivers for some or all cards available, in other cases the drivers are supplied with the card itself, or are available for download.

  • DOS programs for the IBM PC often had to use universal middleware driver libraries (such as the HMI Sound Operating System, the Miles Sound System etc.) which had drivers for most common sound cards, since DOS itself had no real concept of a sound card. Some card manufacturers provided (sometimes inefficient) middleware TSR-based drivers for their products, and some programs simply had drivers incorporated into the program itself for the sound cards that were supported.
  • Microsoft Windows uses proprietary drivers generally written by the sound card manufacturers. Many makers supply the drivers to Microsoft for inclusion on Windows distributions. Sometimes drivers are also supplied by the individual vendors for download and installation. Bug fixes and other improvements are likely to be available faster via downloading, since Windows CDs cannot be updated as frequently as a web or FTP site. Vista will use UAA.
  • A number of versions of UNIX make use of the portable Open Sound System. Drivers are seldom produced by the card manufacturer.
    • Most Linux-based distributions make use of the Advanced Linux Sound Architecture, but have taken measures to remain compatible with the Open Sound System.

See also

  • Computer hardware
  • A3D
  • Jack (connector)
  • Musical Instrument Digital Interface (MIDI)
  • AdLib
  • Creative Labs
  • Realtek
  • Sensaura
  • Turtle Beach
  • USB
  • VIA Envy

References

This article was originally based on material from the Free On-line Dictionary of Computing, which is licensed under the GFDL.

External links

  • A History of PC Sound Hardware
  • AudioTrak
  • C-Media Electronics
  • Creative Labs
  • ESI Pro
  • How Stuff Works - Sound Cards
  • M-Audio
  • Sensaura
  • Sound Blaster
  • Turtle Beach
  • Via Technologies - Audio
Retrieved from "http://en.wikipedia.org/wiki/Sound_card"